Acrylamide is present in thermally processed foods, and it possesses toxic and carcinogenic properties. L-asparaginases could effectively regulate the formation of acrylamide at the source. However, current L-asparaginases have drawbacks such as poor thermal stability, low catalytic activity, and poor substrate specificity, thereby restricting their utility in the food industry. To address this issue, this study employed consensus design to predict the crucial residues influencing the thermal stability of L-asparaginase (CgASNase). Subsequently, a combination of site-point saturating mutation and combinatorial mutation techniques was applied to generate the double-mutant enzyme L42T/S213N. Remarkably, L42T/S213N displayed significantly enhanced thermal stability without a substantial impact on its enzymatic activity. Notably, its half-life at 40 °C reached an impressive 13.29 ± 0.91 min, surpassing that of CgASNase (3.24 ± 0.23 min). Moreover, the enhanced thermal stability of L42T/S213N can be attributed to an increased positive surface charge and a more symmetrical positive potential, as revealed by three-dimensional structural simulations and structure comparison analyses. To assess the impact of L42T/S213N on acrylamide removal in biscuits, the optimal treatment conditions for acrylamide removal were determined through a combination of one-way and orthogonal tests, with an enzyme dosage of 300 IU/kg flour, an enzyme reaction temperature of 40 °C, and an enzyme reaction time of 30 min. Under these conditions, compared to the control (464.74 ± 6.68 µg/kg), the acrylamide reduction in double-mutant-enzyme-treated biscuits was 85.31%, while the reduction in wild-type-treated biscuits was 68.78%. These results suggest that L42T/S213N is a promising candidate for industrial applications of L-asparaginase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10706719PMC
http://dx.doi.org/10.3390/foods12234364DOI Listing

Publication Analysis

Top Keywords

thermal stability
20
enhanced thermal
8
acrylamide removal
8
enzyme reaction
8
acrylamide
6
thermal
5
l42t/s213n
5
stability enhancement
4
enhancement l-asparaginase
4
l-asparaginase based
4

Similar Publications

To reduce greenhouse emissions and producing electricity with the smallest environmental impact, developing solar power technology is one of the most important milestones to achieve. Thus, to improve the efficiency of the concentrated solar power (CSP) plants, with lower environmental impact, is of great interest. This work reports the development of nanofluids, a colloidal suspension of nanomaterials in a fluid, based on an environment-friendly base fluid for improving the performance of the heat transfer process in CSP plants.

View Article and Find Full Text PDF

Microbubble-assisted starch modification (MASM) using different gases (N, CO and air) was employed to assess the effects of hydrodynamic cavitation (HC) on various botanical starches, including potato, wheat, corn and rice. SEM showed that N- and CO- microbubbles created more pronounced holes and cracks on the starch surfaces than air-microbubbles. The hydrodynamic cavitation-assisted microbubble (HCAM) treatment significantly reduced the amorphous and crystalline structures in potato and wheat starches, with less impact observed in corn and rice.

View Article and Find Full Text PDF

Flame retardancy and durability of cotton fabric modified with high-efficiency diboraspiro rings groups flame retardant.

Int J Biol Macromol

January 2025

College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:

The synthesis of highly efficient and environmentally friendly flame retardants through the synergistic interaction of boron, phosphorus and nitrogen is becoming a new research direction. In this study, N-DBSPA, a flame retardant with high flame retardancy, high thermal stability and high efficiency, was prepared by the reaction between pentaerythritol borate and amino trimethylene phosphate, and the limiting oxygen index (LOI) of the modified cotton fabric increased from 18 % to 44.7 % at a weight gain (WG) of 20.

View Article and Find Full Text PDF

Design and synthesis of fluorinated polyimides with low thermal expansion and enhanced dielectric properties.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China. Electronic address:

Modern microelectronics industries urgently require dielectric materials with low thermal expansion coefficients, low dielectric constants, and minimal dielectric loss. However, the design principles of materials with low dielectric constants and low thermal expansion are contradictory. In this study, a new diamine monomer containing a dibenzocyclooctadiene unit (DBCOD-NH) was designed and synthesized, which was subsequently polymerized with high fluorine content 4,4'-hexafluoroisopr-opylidene diphthalic anhydride and 4,4'-diamino-2,2'-bis(trifleoromethyl)biphenyl to obtain a series of fluorinated polyimides (PIs).

View Article and Find Full Text PDF

Lightweight flexible piezoelectric devices have garnered significant interest over the past few decades due to their applications as energy harvesters and wearable sensors. Among different piezoelectrically active polymers, poly(vinylidene fluoride) and its copolymers have attracted considerable attention for energy conversion due to their high flexibility, thermal stability, and biocompatibility. However, the orientation of polymer chains for self-poling under mild conditions is still a challenging task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!