An experiment was conducted on the polyphenol content, flavonoid content, anthocyanin content, and antioxidant capacity of Furong plum ( Lindl. cv. "furong") at different maturity stages to determine the most suitable maturity stage. The inhibition of plum polyphenols on xanthine oxidase (XOD) was measured, and its kinetics were studied to reveal the inhibitory mechanism. The experimental results showed that the polyphenol, flavonoid and anthocyanin contents of plums at the ripe stage were the highest, reaching 320.46 mg GAE/100 g FW, 204.21 mg/100 g FW, and 66.24 mg/100 g FW, respectively, in comparison those of the plums at the immature and mid-ripe stages. The antioxidant capacity of the ripe plums was stronger than it was during the other stages of the plums growth. Among them, the total polyphenols of the ripe plums exhibited the strongest antioxidant capacity (IC values against DPPH and hydroxyl radicals were 28.19 ± 0.67 μg/mL and 198.16 ± 7.55 μg/mL, respectively), which was between the antioxidant capacity of the free polyphenols and bound polyphenols. The major phenolic monomer compounds of plum polyphenols were flavan-3-ols (epicatechin, catechin, proanthocyanidin, and procyanidin B), flavonols (myricetin), and phenolic acids (chlorogenic acid, ferulic acid, and protocatechuic acid). Additionally, plum polyphenols exhibited a strong inhibitory effect on XOD, with an IC value of 77.64 μg/mL. The inhibition kinetics showed that plum polyphenols are mixed-type inhibitors that inhibit XOD activity and that the inhibition process is reversible. The calculated values of and were 16.53 mmol/L and 0.26, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10705914PMC
http://dx.doi.org/10.3390/foods12234253DOI Listing

Publication Analysis

Top Keywords

antioxidant capacity
20
plum polyphenols
16
xanthine oxidase
8
furong plum
8
maturity stages
8
ripe plums
8
polyphenols
7
plum
6
antioxidant
5
capacity
5

Similar Publications

Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.

View Article and Find Full Text PDF

This study aims to measure the effects of different dietary concentrations of triticale hay (TH) on productive performance, carcass characteristics, microbial protein synthesis (MPS), ruminal and blood variables, and antioxidant power in 40 fattening male Gray Shirazi lambs (BW of 33.2 ± 1.1 kg) over 81 days in a completely randomized design (10 animals/diet).

View Article and Find Full Text PDF

To concentrate omega-3 fatty acids (-3) in fish oil (FO), olein and super olein fraction (OF) of FO were produced by winterization. For this purpose, FO was slowly cooled to -50°C (24 h), the mixture of crystallized and non-crystallized phases was separated, filtrate was coded as OF (yield 32%), 35% of OF was kept for storage study and analytical purpose, remaining 65% was further slowly cooled down to -75°C (24 h) and filtered, filtrate was coded as super olein (SF, yield 23%). GC-MS analysis showed that unsaturated fatty acids increased due to successive winterization.

View Article and Find Full Text PDF

Flaxseed gum (FSG) has promising applications in the field of nano/microencapsulation for its biocompatibility and excellent physicochemical properties. In this study, FSG-based nano-microcapsules (FSG NPs) were prepared using high-speed shear homogenization combined with ultrasound for efficient encapsulation of secoisolariciresinol diglucoside (SDG). The particle size of FSG stands for nano-microcapsules (NP) was determined to be 336.

View Article and Find Full Text PDF

NADPH Oxidases: Redox Regulation of Cell Homeostasis & Disease.

Physiol Rev

January 2025

Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261.

The redox signaling network in mammals has garnered enormous interest and taken on major biological significance in recent years as the scope of NADPH oxidases (NOXs) as regulators of physiological signaling and cellular degeneration has grown exponentially. All NOX subtypes have in common the capacity to generate reactive oxygen species (ROS) superoxide anion (O) and/or hydrogen peroxide (HO). A baseline, normal level of ROS formation supports a wide range of processes under physiological conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!