Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus, causes severe diarrhea in neonatal piglets, which is associated with a high mortality rate. Thus, developing effective and safe vaccines remains a top priority for controlling PEDV infection. Here, we designed two lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) vaccines encoding either the full-length PEDV spike (S) protein or a multiepitope chimeric spike (Sm) protein. We found that the S mRNA-LNP vaccine was superior to the Sm mRNA-LNP vaccine at inducing antibody and cellular immune responses in mice. Evaluation of the immunogenicity and efficacy of the S mRNA vaccine in piglets confirmed that it induced robust PEDV-specific humoral and cellular immune responses . Importantly, the S mRNA-LNP vaccine not only protected actively immunized piglets against PEDV but also equipped neonatal piglets with effective passive anti-PEDV immunity in the form of colostrum-derived antibodies after the immunization of sows. Our findings suggest that the PEDV-S mRNA-LNP vaccine is a promising candidate for combating PEDV infection.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) continues to harm the global swine industry. It is important to develop a highly effective vaccine to control PEDV infection. Here, we report a PEDV spike (S) mRNA vaccine that primes a potent antibody response and antigen-specific T-cell responses in immunized piglets. Active and passive immunization can protect piglets against PED following the virus challenge. This study highlights the efficiency of the PEDV-S mRNA vaccine and represents a viable approach for developing an efficient PEDV vaccine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865985 | PMC |
http://dx.doi.org/10.1128/mbio.02958-23 | DOI Listing |
RNA Biol
January 2025
Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India.
RNA-focused therapy and diagnostics have been making waves in molecular biology due to the advantages RNA has over DNA; for instance, the ability of RNA to target nearly any genetic component in the cell is a big step in treating disorders. Moreover, RNA-based diagnosis of diseases is only becoming increasingly popular, especially after the COVID-19 pandemic, which brought up the need for cost-effective and efficient diagnosing kits for the vast majority. RNA-based techniques also have close to no risk of genotoxicity and can efficiently target undruggable regions of the cell.
View Article and Find Full Text PDFCell Discov
January 2025
School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
We investigated a novel cancer immunotherapy strategy that effectively suppresses tumor growth in multiple solid tumor models and significantly extends the lifespan of tumor-bearing mice by introducing pathogen antigens into tumors via mRNA-lipid nanoparticles. The pre-existing immunity against the pathogen antigen can significantly enhance the efficacy of this approach. In mice previously immunized with BNT162b2, an mRNA-based COVID-19 vaccine encoding the spike protein of the SARS-CoV-2 virus, intratumoral injections of the same vaccine efficiently tagged the tumor cells with mRNA-expressed spike protein.
View Article and Find Full Text PDFInt J Pharm
December 2024
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; Faculty of Health Sciences, University of Macau, Macau 999078, China. Electronic address:
Messenger RNA (mRNA) encapsulated in lipid nanoparticles (LNPs) represents a cutting-edge delivery technology that played a pivotal role during the COVID-19 pandemic and in advancing vaccine development. However, molecular structure of mRNA-LNPs at real size remains poorly understood, with conflicting results from various experimental studies. In this study, we aim to explore the assembly process and structural characteristics of mRNA-LNPs at realistic sizes using coarse-grained molecular dynamic simulations.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Nanjing Shenxin Biotechnology Co., Ltd., 211800, China. Electronic address:
Herd immunity through mass vaccination is an effective method for preventing infectious diseases. However, the emerging SARS-CoV-2 variants, with their frequent mutations, largely evade the immune response and protection induced by COVID-19 vaccines. Here, we designed messenger RNAs encoding mutant epitopes of the spike protein shared among various COVID-19 variants.
View Article and Find Full Text PDFFront Immunol
January 2025
Program of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
Background: In endemic COVID-19, immunocompromised children are vulnerable until vaccinated but the optimal primary vaccination regime and need for booster doses remains uncertain.
Methods: We recruited 19 immunocompromised children (post-solid organ transplantation, have autoimmune disease or were on current or recent chemotherapy for acute lymphoblastic leukemia), and followed them from the start of primary vaccination with BNT162b2 mRNA SARS-CoV-2 until 1-year post-vaccination. We investigated the quality of vaccine immunogenicity, and longevity of hybrid immunity, in comparison to healthy children.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!