Polar crystalline materials, a subset of the non-centrosymmetric materials, are highly sought after. Their symmetry properties make them pyroelectric and also piezoelectric and capable of second-harmonic generation (SHG). For SHG and piezoelectric applications, metal oxides are commonly used. The advantages of oxides are durability and hardness - downsides are the need for high-temperature synthesis/processing and often the need to include toxic metals. Organic polar crystals, on the other hand, can avoid toxic metals and can be amenable to solution-state processing. While the vast majority of polar organic molecules crystallize in non-polar space groups, we found that both 7-chloro-1,3,5-triazaadamantane, for short Cl-TAA, and also the related Br-TAA (but not I-TAA) form polar crystals in the space group R3m, easily obtained from dichloromethane solution. Measurements confirm piezoelectric and SHG properties for Cl-TAA and Br-TAA. When the two species are crystallized together, solid solutions form, suggesting that properties of future materials can be tuned continuously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202302998 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!