The development and utilization of coordination polymers (CPs) have drawn interest for potential applications in different fields. Detection of metal ions in efficient and selective manners is an important field of research. It paves the way to protect human health by balancing toxic metal ions and biologically active metal ions in the atmosphere. In this regard, a new one-dimensional (1D) 4-(1-naphthylvinyl)pyridine (4-nvp) based CP [Cd(NCS)(4-nvp)] (1) was synthesized and characterized structurally by single-crystal X-ray diffraction. Interestingly, this 1D CP underwent supramolecular aggregation π⋯π stacking interactions, which specifically generated an environment for a potent "turn on" response in the presence of trivalent cations (Fe, Al, and Cr) in the nanomolar range but remained silent in the presence of other metal ions. Density functional theory (DFT) computations and X-ray photoelectron spectroscopy (XPS) were performed to establish the sensing phenomena. Fascinatingly, utilizing the sensitivity of 1 in an aqueous medium, a hands-on portable cotton swab kit was developed for instant identification of these three important trivalent metal cations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt03939kDOI Listing

Publication Analysis

Top Keywords

metal ions
16
trivalent cations
8
metal
5
exploitation coordination
4
coordination polymer
4
polymer portable
4
portable kit
4
kit eye-catching
4
eye-catching fluorometric
4
fluorometric response
4

Similar Publications

Emerging biosensing platforms based on metal-organic frameworks (MOFs) for detection of exosomes as diagnostic cancer biomarkers: case study for the role of the MOFs.

J Mater Chem B

January 2025

Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.

Exosomes, which are considered nanoscale extracellular vesicles (EVs), are secreted by various cell types and widely distributed in different biological fluids. They consist of multifarious bioactive molecules and use systematic circulation for their transfer to adjoining cells. This phenomenon enables exosomes to take part in intercellular and intracellular communications.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries promise low-cost and safe grid storage, but their practical application is hindered by poor Zn anode reversibility, primarily due to dendrite formation and water-induced side reactions in the electric double layer (EDL) structure. Herein, a monolayer of hydrophobic carbon dots (CDs) was dynamically constructed at the electrode/electrolyte interface. The trace-added hydrophobic CDs in the electrolyte reconstruct a hydrophobic and favorable EDL structure, suppressing water-induced side reactions in the inner Helmholtz layer and facilitating the desolvation of hydrated zinc ions at the outer Helmholtz layer.

View Article and Find Full Text PDF

Intracellular metal ion-based chemistry for programmed cell death.

Chem Soc Rev

January 2025

Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.

Intracellular metal ions play essential roles in multiple physiological processes, including catalytic action, diverse cellular processes, intracellular signaling, and electron transfer. It is crucial to maintain intracellular metal ion homeostasis which is achieved by the subtle balance of storage and release of metal ions intracellularly along with the influx and efflux of metal ions at the interface of the cell membrane. Dysregulation of intracellular metal ions has been identified as a key mechanism in triggering programmed cell death (PCD).

View Article and Find Full Text PDF

A previous companion paper introduced a current pathways model that represents the electrical coupling between the Hall effect thruster (HET) and the ground-based vacuum test facility operational environment. In this work, we operated a 7-kW class HET at 4.5 kW, 15 A and 6 kW, 20 A on krypton to quantify aspects of the current pathways model to characterize the role metal vacuum chambers play in the thruster's discharge circuit as a function of discharge current.

View Article and Find Full Text PDF

Multifunctional DNA-Metal Nanohybrids Derived From DNA-MgPPi Microhybrids by Rolling Circle Amplification.

Small Methods

January 2025

Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.

Rolling circle amplification (RCA)-derived ultra-long DNA is highly attractive and versatile because of its diverse functionalities conferred by repeated DNA nanostructures. However, magnesium pyrophosphate (MgPPi) crystals, as byproducts of RCA, electrostatically interact with the DNA to form DNA microhybrids and hamper its broad bioapplications, as its large size is unfavorable for cellular uptake and decreases the density of functional DNA nanostructures. In this study, finely tuned synthesis strategies are developed to condense the microhybrids and replace non-functional MgPPi crystals with various functional metal nanostructures by reducing metal ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!