The kinetics and mechanism of the reaction between OH radicals and ferrous ions in the temperature range 25-300 °C were studied using pulse radiolysis. At temperatures <150 °C the rate of reaction is essentially independent of temperature, while at temperatures >150 °C the activation energy is 45.8 ± 3.0 kJ mol. The change in activation energy is attributed to a change in the dominant mechanism from hydrogen atom transfer (HAT) to dissociative ligand interchange. The kinetic isotope effect (KIE) was measured by repeating experiments in heavy water. A value of 2.9 was measured at room temperature where HAT is the dominant mechanism. The KIE decreases to zero at temperatures > 150 °C as ligand interchange becomes dominant and the O-H bond is no longer involved in the reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp03819j | DOI Listing |
Nan Fang Yi Ke Da Xue Xue Bao
December 2024
Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, China.
Objectives: To investigate the inhibitory effect of FER-1 on methylglyoxal-induced ferroptosis in cultured mouse alveolar macrophages.
Methods: MH-S cells derived from mouse alveolar macrophages treated with 90 μg/mL methylglyoxal, 10 μmol/mL FER-1MG+FER-1, or both were examined for intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and ferrous ion (Fe) levels and changes in mitochondrial membrane potential. Western blotting was performed to detect the protein expression levels of glutathione peroxidase 4 (GPX4) and long-chain acyl-CoA synthase 4 (ACSL4).
Int J Pharm
December 2024
Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China. Electronic address:
Ferroptosis, a regulated form of cell death distinct from apoptosis, was first identified in 2012 and is characterized by iron-dependent lipid peroxidation driven by reactive oxygen species (ROS). Since its discovery, ferroptosis has been linked to various diseases, with recent studies highlighting its potential in cancer therapy, particularly for targeting cancer cells that are resistant to traditional treatments like chemotherapy and radiotherapy. While iron has historically been central to ferroptosis, emerging evidence indicates that non-ferrous ions, especially manganese (Mn), also play a crucial role in modulating this process.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Department of Emergency and Critical Care, The Second Hospital of Jilin University, Changchun, 130021, People's Republic of China.
Purpose: Maresin 1 (MaR1) is a specialized pro-resolving mediator with anti-inflammatory properties that promotes tissue repair. This study aims to investigate the molecular involvement of MaR1 in protecting against sepsis-induced acute liver injury (SI-ALI).
Methods: In vivo, a murine SI-ALI model was established using the cecal ligation and puncture (CLP) paradigm, providing a system in which the mechanistic functions of MaR1 could be tested.
Biomed Pharmacother
December 2024
School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China. Electronic address:
Ferroptosis is a novel form of oxidative cell death, in which highly expressed unsaturated fatty acids on the cell membrane are catalyzed by divalent iron or ester oxygenase to promote liposome peroxidation. This process reduces cellular antioxidant capacity, increases lipid reactive oxygen species, and leads to the accumulation of intracellular ferrous ions, which disrupts intracellular redox homeostasis and ultimately causes oxidative cell death. Studies have shown that ferroptosis induces an immune response that has a dual role in liver disease, ferroptosis also offers a promising strategy for precise cancer therapy.
View Article and Find Full Text PDFObjectives: To observe the effect of eye-acupuncture on the antioxidant function axis:System xc(-)-glutathione-glutathione peroxidase 4 (System xc[-]-GSH-GPX4) in the cortical tissue of ischemic penumbra of acute cerebral ischemia-reperfusion injury (CIRI) rats, so as to explore its underlying mechanism in improvement of CIRI by ameliorating the ferroptosis of neurons via antioxidant function axis.
Methods: Male SD rats were randomly divided into sham operation, model, eye-acupuncture and GPX4-inhibitor groups, with 15 rats in each group. The CIRI model was replicated by occlusion of the middle cerebral artery and reperfusion for 24 h.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!