A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monitoring land subsidence in the Peshawar District, Pakistan, with a multi-track PS-InSAR technique. | LitMetric

Monitoring land subsidence in the Peshawar District, Pakistan, with a multi-track PS-InSAR technique.

Environ Sci Pollut Res Int

Machine Intelligence and Slope Stability Laboratory, Department of Geosciences, University of Padova, 35131, Padua, Italy.

Published: February 2024

Peshawar is one of the most densely populated cities of Pakistan with high urbanization rate. The city overexploits groundwater resources for household and commercial usage which has caused land subsidence. Land subsidence has long been an issue in Peshawar due to insufficient groundwater removal. In this research, we employ the persistent scatterer interferometry synthetic aperture radar (PS-InSAR) technique with Sentinel-1 imaging data to observe the yearly land subsidence and generate accumulative time-series maps for the years (2018 to 2020) using the SAR PROcessing tool (SARPROZ). The PS-InSAR findings from two contiguous paths are combined by considering the variance over the overlapping area. The subsidence rates in the Peshawar are from -59 to 17 mm/yr. The results show that subsidence is -28.48 mm/yr in 2018, the subsidence reached -49.02 mm/yr in 2019, while in 2020, the subsidence reached -49.90 mm/yr. The findings indicate a notable rise in land subsidence between the years 2018 and 2020. Subsidence is predicted in the research region primarily due to excessive groundwater removal and soil consolidation induced by surficial loads. The correlation of land subsidence observations with groundwater levels and precipitation data revealed some relationships. Overall, the proposed method efficiently monitors, maps, and detects subsidence-prone areas. The utilization of land subsidence maps will enhance the efficiency of urban planning, construction of surface infrastructure, and the management of risks associated with subsidence.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-31995-xDOI Listing

Publication Analysis

Top Keywords

land subsidence
28
subsidence
13
ps-insar technique
8
groundwater removal
8
years 2018
8
2018 2020
8
subsidence reached
8
2020 subsidence
8
land
6
monitoring land
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!