In the departments of civil engineering, many experiments are conducted in laboratories for educational and research purposes. Varying degrees of respirable dust are generated as the outcome of these experiments, which could cause harm to instructors' and students' health. This study is devised to highlight the importance of indoor air quality in university laboratories. As part of the research, four different particulate matter (PM) sizes (PM, PM, PM, and PM) were measured during specific experiments-sieve analysis, preparation of the concrete mixture, crushing aggregate by jaw crusher, dynamic triaxial compression test, sieve analysis of silt specimen, cleaning sieve by an air compressor, and proctor compaction test-being conducted periodically in the laboratories of civil engineering departments. The measured values are mainly high compared to indoor air quality standards. Mitigation strategies were applied to reduce indoor air PM levels in the three experiments that contained the highest PM levels. The results have shown that mitigation strategies applied as control measures could make a remarkable difference in protecting instructors and civil engineering students.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10869401 | PMC |
http://dx.doi.org/10.1007/s11356-024-31926-w | DOI Listing |
Environ Sci Technol
January 2025
Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States.
Significant hourly variation in the carbon intensity of electricity supplied to wastewater facilities introduces an opportunity to lower emissions by shifting the timing of their energy demand. This shift could be accomplished by storing wastewater, biogas from sludge digestion, or electricity from on-site biogas generation. However, the life cycle emissions and cost implications of these options are not clear.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, P. R. China.
Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Civil Engineering, University of Guilan, Rasht, Iran.
Glassphalt suffers from performance defects, especially against moisture damage and fatigue cracking. In this research, the performance of glassphalt modified with CF has been evaluated against moisture damage, fatigue cracking and rutting. Based on this, Modified Lottman, Wilhelmy Plate (WP), Indirect Tensile Stiffness Modulus (ITSM), Indirect Tensile Fatigue (ITF), and Repeated Load Axial (RLA) tests have been performed on glassphalt modified with CF.
View Article and Find Full Text PDFNat Biotechnol
January 2025
Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA.
Environ Monit Assess
January 2025
Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
Papermaking wastewater consists of a sizable amount of industrial wastewater; hence, real-time access to precise and trustworthy effluent indices is crucial. Because wastewater treatment processes are complicated, nonlinear, and time-varying, it is essential to adequately monitor critical quality indices, especially chemical oxygen demand (COD). Traditional models for predicting COD often struggle with sensitivity to parameter tuning and lack interpretability, underscoring the need for improvement in industrial wastewater treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!