Microbial electrosynthesis (MES) constitutes a bioelectrochemical process where bacteria uptake electrons extracellularly from a polarized electrode to incorporate them into their anabolic metabolism. However, the efficiency of current MES reactor designs can be lower than expected due to limitations regarding electron transfer and mass transport. One of the most promising bioreactor configurations to overcome these bottlenecks is the Microbial Electrochemical Fluidized Bed Reactor (ME-FBR). In this study, microbial CO fixation is investigated for the first time in a ME-FBR operated as a 3-phase reactor (solid-liquid-gas). An electroconductive carbon bed, acting as a working electrode, was fluidized with gas and polarized at different potentials (-0.6, -0.8 and -1 V vs. Ag/AgCl) so it could act as an electron donor (biocathode). Under these potentials, CO fixation and electron transfer were evaluated. Autotrophic electroactive microorganisms from anaerobic wastewater were enriched in a ME-FBR in the presence of 2-bromoethanosulfonic acid (BES) to inhibit the growth of methanogens. Cyclic voltammetry analysis revealed interaction between the microorganisms and the cathode. Furthermore, volatile fatty acids like propionate, formate and acetate were detected in the culture supernatant. Acetate production had a maximum rate of ca. 1 g L  day . Planktonic cell biomass was produced under continuous culture at values as high as ca. 0.7 g L dry weight. Overall, this study demonstrates the feasibility of employing a fluidized electrode with gaseous substrates and electricity as the energy source for generating biomass and carboxylic acids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10832540PMC
http://dx.doi.org/10.1111/1751-7915.14383DOI Listing

Publication Analysis

Top Keywords

volatile fatty
8
fatty acids
8
electron transfer
8
novel electrochemical
4
electrochemical strategies
4
microbial
4
strategies microbial
4
microbial conversion
4
conversion biomass
4
biomass volatile
4

Similar Publications

Phytometabolites, Pharmacological Effects, Ethnomedicinal Properties, and Bioeconomic Potential of Velvet Apple (Diospyros discolor Willd.): A Review.

Chem Biodivers

January 2025

Liverpool John Moores University, Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Diospyros discolor Willd., commonly known as Velvet apple or Mabolo, is an underutilized fruit. Traditionally, various parts of D.

View Article and Find Full Text PDF

Association between gut microbiota and short-chain fatty acids in children with obesity.

Sci Rep

January 2025

Department of Child Healthcare, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, 100 Hongkong Road, Wuhan, 430016, Hubei, China.

The gut microbiome and its metabolites may be important role in regulating the pathogenesis of obesity. This study aimed to characterize the gut microbiome and short-chain fatty acid (SCFA) metabolome in obese children. This case-control study recruited children aged 7‒14 years and divided them into a normal group (NG) and an obese group (OG) based on their body mass index.

View Article and Find Full Text PDF

Key enzymatic activities and metabolic pathway dynamics in acidogenic fermentation of food waste: Impact of pH and organic loading rate.

J Environ Manage

December 2024

College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China. Electronic address:

Acidogenic fermentation was an effective technology to recover volatile fatty acids (VFAs) ethanol and lactic acid from food wastes (FW) as bioresources. However, the impact of process controls on key functional enzymes and metabolic pathways has been inadequately understood. In this study, the metabolite distribution, key functional enzymes and metabolic pathways were completely elucidated using 16S rRNA gene high-throughput sequencing combined with PICRUSt2.

View Article and Find Full Text PDF

Potential and characteristics on nitrobenzene degradation by biological acidification.

J Environ Manage

December 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China. Electronic address:

Biological acidification, efficient and low-cost biotechnology, is crucial in treating pharmaceutical, pesticide water, and petrochemical wastewater. Nitrobenzene is a typical organic pollutant in petrochemical wastewater with high toxicity and long persistence. However, its effect on hydrolysis acidification is yet to be fully elucidated.

View Article and Find Full Text PDF

Objective: Modified Zuo Gui Wan (MZGW) was a combination of Zuo Gui Wan and red yeast rice used for treating osteoporosis (OP), but its mechanism remains unclear. We aimed to validate the anti-OP effect of MZGW and explore its underlying mechanism.

Methods: An ovariectomy (OVX) rat model in vivo and a RANKL-induced osteoclasts (OCs) model in vitro were established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!