An efficient catalytic asymmetric electrophilic sulfenylation reaction for the synthesis of planar-chiral sulfur-containing cyclophanes has been developed for the first time. This was achieved by using a new Lewis base catalyst and a new ortho-trifluoromethyl-substituted sulfenylating reagent. Using the substrates with low rotational energy barrier, the transformation proceeded through a dynamic kinetic resolution, and the high rotational energy barrier of the substrates allowed the reaction to undergo a kinetic resolution process. Meanwhile, this transformation was compatible with a desymmetrization process when the symmetric substrates were used. Various planar-chiral sulfur-containing cyclophanes were readily obtained in moderate to excellent yields with moderate to excellent enantioselectivities (up to 97 % yield and 95 % ee). This approach was used to synthesize pharmaceutically relevant planar-chiral sulfur-containing molecules. Density functional theory calculations showed that π-π interactions between the sulfenyl group and the aromatic ring in the substrate play a crucial role in enantioinduction in this sulfenylation reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202318625 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!