Complex locomotor patterns are generated by combination of muscle synergies. How genetic processes, early sensorimotor experiences, and the developmental dynamics of neuronal circuits contribute to the expression of muscle synergies remains elusive. We shed light on the factors that influence development of muscle synergies by studying subjects with spinal muscular atrophy (SMA, types II/IIIa), a disorder associated with degeneration and deafferentation of motoneurons and possibly motor cortical and cerebellar abnormalities, from which the afflicted would have atypical sensorimotor histories around typical walking onset. Muscle synergies of children with SMA were identified from electromyographic signals recorded during active-assisted leg motions or walking, and compared with those of age-matched controls. We found that the earlier the SMA onset age, the more different the SMA synergies were from the normative. These alterations could not just be explained by the different degrees of uneven motoneuronal losses across muscles. The SMA-specific synergies had activations in muscles from multiple limb compartments, a finding reminiscent of the neonatal synergies of typically developing infants. Overall, while the synergies shared between SMA and control subjects may reflect components of a core modular infrastructure determined early in life, the SMA-specific synergies may be developmentally immature synergies that arise from inadequate activity-dependent interneuronal sculpting due to abnormal sensorimotor experience and other factors. Other mechanisms including SMA-induced intraspinal changes and altered cortical-spinal interactions may also contribute to synergy changes. Our interpretation highlights the roles of the sensory and descending systems to the typical and abnormal development of locomotor modules. This is likely the first report of locomotor muscle synergies of children with spinal muscular atrophy (SMA), a subject group with atypical developmental sensorimotor experience. We found that the earlier the SMA onset age, the more the subjects' synergies deviated from those of age-matched controls. This result suggests contributions of the sensory/corticospinal activities to the typical expression of locomotor modules, and how their disruptions during a critical period of development may lead to abnormal motor modules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321722PMC
http://dx.doi.org/10.1152/jn.00513.2022DOI Listing

Publication Analysis

Top Keywords

muscle synergies
24
synergies
13
spinal muscular
12
muscular atrophy
12
development locomotor
8
locomotor muscle
8
atrophy sma
8
synergies children
8
age-matched controls
8
earlier sma
8

Similar Publications

The Structural Design, Kinematics, and Workspace Analysis of a Novel Rod-Cable Hybrid Cable-Driven Parallel Robot.

Biomimetics (Basel)

December 2024

Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.

This study presents a novel rod-cable hybrid planar cable-driven parallel robot inspired by the biological synergy of bones and muscles. The design integrates rigid rods and flexible cables to enhance structural stability and precision in motion control. The rods emulate bones, providing foundational support, while the cables mimic muscles, driving motion through coordinated tension.

View Article and Find Full Text PDF

Inter-subject variability in muscle synergies during squatting movements.

Hum Mov Sci

January 2025

Department of Sports Rehabilitation, Cheongju University, Republic of Korea. Electronic address:

This study investigated muscle synergies during squats, focusing on the individual variability in motor control strategies. Sixteen healthy young adults performed 20 squats at a consistent speed. Muscle synergies were extracted using non-negative matrix factorization, followed by k-means clustering and discriminant analysis to categorize similar muscle synergies.

View Article and Find Full Text PDF

Shoulder Aesthetics: A Novel Synergy of Hyaluronic Acid Fillers and Neuromodulators.

Aesthetic Plast Surg

January 2025

Medical Research Inc., Wonju, Korea.

The pursuit of aesthetically pleasing shoulder contours, particularly those characterised by a sharp, angular definition, has gained significant traction in Southeast Asia. Traditionally, neuromodulators have been used to achieve these results by inducing muscle atrophy, particularly in the trapezius muscles. However, this approach can carry potential risks, such as compromised muscle function and spinal instability.

View Article and Find Full Text PDF

Does muscle fatigue change motor synergies at different levels of neuromotor control?

Front Hum Neurosci

January 2025

Institute of Sport Sciences, Department of Human Motor Behavior, Academy of Physical Education, Katowice, Poland.

We investigated the effects of static and dynamic fatigue on motor synergies, focusing on their hierarchical control. Specifically, we examined whether changes in fatigue influence the central nervous system's ability to preserve movement stability. In addition to exploring the direct impact of fatigue on motor synergies, we also analyzed its effects at two distinct levels of hierarchical control, aiming to elucidate the mechanisms by which fatigue alters motor coordination and stability.

View Article and Find Full Text PDF

Integrating deliberate shaking into daily living: a paradoxical exercise for Parkinsonian tremor.

Disabil Rehabil

January 2025

Department of General Practice and Primary Health Care, University of Auckland, Auckland, New Zealand.

Purpose: Medication often falls short in controlling tremors in Parkinson's disease. While physical activities suggest potential benefits, current exercise regimes have limitations. This paper explores the concept of deliberate shaking as an intervention to aid exercise uptake and potentially leverage synergies between medication and physical activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!