Acute myeloid leukemia (AML) is a commonly hematological malignancy with feature of rapidly increased immature myeloid cells in bone marrow. The anti-tumor activity of matrine has been reported in various cancers. However, the functional role of matrine in AML progression still needs to be studied. Cell growth, apoptosis and cell cycle arrest in AML cells were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay and flow cytometry, respectively. The levels of adenosine triphosphate (ATP)/adenosine diphosphate (ADP) ratio, lactate production and glucose consumption were detected to evaluate glycolysis. Dual-luciferase reporter assay was conducted to determine the relationships between phosphoinositide-dependent kinase 1 (PDK1) and microRNA-495-3p (miR-495-3p)/microRNA-543 (miR-543) in AML cells. The results showed that matrine inhibited cell proliferation, glycolysis, and accelerated cell apoptosis and cell cycle arrest in AML cells. MiR-495-3p/miR-543 was lowly expressed, and PDK1 was highly expressed in AML. Functionally, both miR-495-3p and miR-543 could reverse the effects of matrine on cell proliferation, glycolysis, apoptosis and cell cycle arrest in AML cells. Mechanistically, miR-495-3p/miR-543 directly targeted PDK1, and the inhibition impacts of miR-495-3p/miR-543 on AML progression could be rescued by PDK1 overexpression. Moreover, matrine also could regulate PDK1 expression to suppress AML progression. Besides, matrine modulated miR-495-3p/miR-543/PDK1 axis to inhibit the Wnt/β-catenin pathway. In summary, matrine hampered the progression of AML through targeting miR-495-3p and miR-543 to attenuate PDK1 expression, thereby repressing the Wnt/β-catenin pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cbdd.14441DOI Listing

Publication Analysis

Top Keywords

aml cells
16
wnt/β-catenin pathway
12
aml progression
12
apoptosis cell
12
cell cycle
12
cycle arrest
12
arrest aml
12
aml
10
matrine
8
mir-495-3p/mir-543/pdk1 axis
8

Similar Publications

Induced pluripotent stem cell (iPSC)-derived natural killer (NK) cells offer an opportunity for a standardized, off-the-shelf treatment with the potential to treat a wider population of acute myeloid leukaemia (AML) patients than the current standard of care. FT538 iPSC-NKs express a high-affinity, noncleavable CD16 to maximize antibody dependent cellular cytotoxicity, a CD38 knockout to improve metabolic fitness, and an IL-15/IL-15 receptor fusion preventing the need for cytokine administration, the main source of adverse effects in NK cell-based therapies. Here, we sought to evaluate the potential of FT538 iPSC-NKs as a therapy for AML through their effect on AML cell lines and primary AML cells.

View Article and Find Full Text PDF

Background/objectives: Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive malignancy that poses significant challenges due to high rates of relapse and resistance to treatment, particularly in older populations. While therapeutic advances have been made, survival outcomes remain suboptimal. The evolution of DNA and RNA sequencing technologies, including whole-genome sequencing (WGS), whole-exome sequencing (WES), and RNA sequencing (RNA-Seq), has significantly enhanced our understanding of AML at the molecular level.

View Article and Find Full Text PDF

Genetic studies of haematological cancers have pointed out the heterogeneity of leukaemia in its different subpopulations, with distinct mutations and characteristics, impacting the treatment response. Next-generation sequencing (NGS) and genome-wide analyses, as well as single-cell technologies, have offered unprecedented insights into the clonal heterogeneity within the same tumour. A key component of this heterogeneity that remains unexplored is the intracellular metabolome, a dynamic network that determines cell functions, signalling, epigenome regulation, immunity and inflammation.

View Article and Find Full Text PDF

The mechanistic link between the complex mutational landscape of de novo methyltransferase DNMT3A and the pathology of acute myeloid leukemia (AML) has not been clearly elucidated so far. Motivated by a recent discovery of the significance of DNMT3A-destabilizing mutations (DNMT3A) in AML, we here investigate the common characteristics of DNMT3A AML methylomes through computational analyses. We present that methylomes of DNMT3A AMLs are considerably different from those of DNMT3A AMLs in that they exhibit increased intratumor DNA methylation heterogeneity in bivalent chromatin domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!