Electron Lock Manipulates the Catalytic Selectivity of Nanozyme.

ACS Nano

Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China.

Published: January 2024

Nanomaterials with enzyme-mimicking functions, termed nanozymes, offer attractive opportunities for biocatalysis and biomedicine. However, manipulating nanozyme selectivity poses an insurmountable hurdle. Here, we propose the concept of an energy-governed electron lock that controls electron transfer between nanozyme and substrates to achieve selectivity manipulation of enzyme-like catalysis. An electron lock can be constructed and opened, via modulating the nanozyme's electron energy to match the energy barrier of enzymatic reactions. An iron-doped carbon dot (FeCD) nanozyme with easy-to-regulate electron energy is selected as a proof of concept. Through regulating the conduction band which dominates electron energy, activatable oxidase and selective peroxidase (POD) with substrate affinity 123-fold higher than that of natural horseradish peroxidase (HRP) is achieved. Furthermore, while maintaining selectivity, FeCDs exhibit catalytic kinetics comparable to that of HRP upon transforming photons into electrons. Superior selectivity, efficient catalysis, and undetectable biotoxicity energize FeCDs as potent targeted drugs on antibiotic-resistant bacterial abscesses. An electron lock provides a robust strategy to manipulate selectivity toward advanced nanozymes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c12201DOI Listing

Publication Analysis

Top Keywords

electron lock
16
electron energy
12
electron
8
selectivity
6
lock manipulates
4
manipulates catalytic
4
catalytic selectivity
4
nanozyme
4
selectivity nanozyme
4
nanozyme nanomaterials
4

Similar Publications

Metal-Ligand Spin-Lock Strategy for Inhibiting Anion Dimerization in Li-Rich Cathode Materials.

J Am Chem Soc

January 2025

Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.

Article Synopsis
  • Anion dimerization in Li-rich cathode materials hampers the performance of Li-ion batteries by causing rapid capacity loss and poor reaction kinetics.
  • The proposed metal-ligand spin-lock strategy utilizes an Fe-Ni couple to stabilize the spin orientations of anion electrons, effectively reducing anion dimerization.
  • Experimental results with ID-LTS and other materials showed improved electrochemical performance, validating the potential of this strategy for developing better high-energy-density battery materials.
View Article and Find Full Text PDF

Revealing Single-Molecule Photocurrent Generation Mechanisms under On- and Off-Resonance Excitation.

Nano Lett

January 2025

Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

We investigate photocurrent generation mechanisms in a pentacene single-molecule junction using subnanometer resolved photocurrent imaging under both on- and off-resonance laser excitation. By employing a wavelength-tunable laser combined with a lock-in technique, net photocurrent signals are extracted to elucidate photoinduced electron tunneling processes. Under off-resonance excitation, photocurrents are found to arise from photon-assisted tunneling, with contributions from three distinct frontier molecular orbitals at different bias voltages.

View Article and Find Full Text PDF

Achieving substantial electrostrain alongside a large effective piezoelectric strain coefficient (d*) in piezoelectric materials remains a formidable challenge for advanced actuator applications. Here, a straightforward approach to enhance these properties by strategically designing the domain structure and controlling the domain switching through the introduction of arrays of ordered {100}<100> dislocations is proposed. This dislocation engineering yields an intrinsic lock-in steady-state electrostrain of 0.

View Article and Find Full Text PDF

Molecular Dynamics (MD) Simulations Provide Insights into the Activation Mechanisms of 5-HT Receptors.

Molecules

October 2024

Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA.

Recent breakthroughs in the determination of atomic resolution 3-D cryo-electron microscopy structures of membrane proteins present an unprecedented opportunity for drug discovery. Structure-based drug discovery utilizing in silico methods enables the study of dynamic connectivity of stable conformations induced by the drug in achieving its effect. With the ever-expanding computational power, simulations of this type reveal protein dynamics in the nano-, micro-, and even millisecond time scales.

View Article and Find Full Text PDF

The ability to fold the wings is an important phenomenon in insect evolution and a feature that attracts the attention of engineers who develop biomimetic technologies. Beetles of the family Ptiliidae (featherwing beetles) are unique among microinsects in their ability to fold their bristled wings under the elytra and unfold them before flight. The folding and unfolding of bristled wings and of the structures involved in these processes varies among ptiliids, but only one species, Acrotrichis sericans, has been analyzed in detail.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!