A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6l4g71cadmcv2u1g6tjj1iodak125aat): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Classification of cancer types based on microRNA expression using a hybrid radial basis function and particle swarm optimization algorithm. | LitMetric

AI Article Synopsis

  • Cancer diagnosis and treatment is complex, and microRNAs play a crucial role in gene regulation and cancer development, making their analysis vital in cancer research.* -
  • This paper introduces a new method for classifying cancer types based on microRNA data, combining a radial basis function (RBF) neural network and particle swarm optimization (PSO) for effective feature selection.* -
  • The proposed method achieved high accuracy rates of 0.95% and 0.91% on two datasets, outperforming previous techniques and demonstrating a more efficient classification process for cancer types.*

Article Abstract

The diagnosis and treatment of cancer is one of the most challenging aspects of the medical profession, despite advances in disease diagnosis. MicroRNAs are small noncoding RNA molecules involved in regulating gene expression and are associated with several cancer types. Therefore, the analysis of microRNA data has become one of the most important areas of cancer research in recent years. This paper presents an improved method for cancer-type classification based on microRNA expression data using a hybrid radial basis function (RBF) and particle swarm optimization (PSO) algorithm. Two datasets containing microRNA information were used, and preprocessing and normalization operations were performed on the raw data. Feature selection was carried out by using the PSO algorithm, which can identify the most relevant and informative features in the data along with helping to prioritize them. Using a PSO algorithm for feature selection is an effective approach to microRNA analysis. This enhances the accuracy and reliability of cancer-type classifications based on microRNA expression data. In the proposed method, we, respectively, achieved an accuracy of 0.95% and 0.91% on both datasets, with an average of 0.93%, using an improved RBF neural network classifier. These results demonstrate that the proposed method outperforms previous works. RESEARCH HIGHLIGHTS: To enhance the accuracy of cancer-type classifications based on microRNA expression data. We present a minimal feature selection method using particle swarm optimization to reduce computational load & radial basis function to improve accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.24492DOI Listing

Publication Analysis

Top Keywords

based microrna
16
microrna expression
16
radial basis
12
basis function
12
particle swarm
12
swarm optimization
12
expression data
12
pso algorithm
12
feature selection
12
cancer types
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!