Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A macrourid, Coryphaenoides yaquinae sp. inc., was observed to be attracted to bait and exhibiting normal foraging behaviour during a period of 80 min within view of a baited video camera on the sea floor at 7259 m - the deepest ever observation of a fish species with a swim bladder. The buoyancy provided by an oxygen-filled swim bladder at 74.4 MPa pressure was estimated to be 0.164 N, at a theoretical energy cost of 20 kJ, 200 times less than the cost of equivalent lipid buoyancy. During normal metabolism, 192 days would be required to fill the swimbladder. At these depths, oxygen is very incompressible, so changes in volume during ascent or descent are small. However, swimbladder function is crucially dependent on a very low rate of diffusion of oxygen across the swimbladder wall. The oxygen in the swimbladder could theoretically sustain aerobic metabolism for over 1 year but is unlikely to be used as a reserve.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917060 | PMC |
http://dx.doi.org/10.1242/jeb.246522 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!