A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

On Lightweight Shape Memory Vitrimer Composites. | LitMetric

On Lightweight Shape Memory Vitrimer Composites.

ACS Appl Polym Mater

Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.

Published: January 2024

Lightweight materials are highly desired in many engineering applications. A popular approach to obtain lightweight polymers is to prepare polymeric syntactic foams by dispersing hollow particles, such as hollow glass microbubbles (HGMs), in a polymer matrix. Integrating shape memory vitrimers (SMVs) in fabricating these syntactic foams enhances their appeal due to the multifunctionality of SMVs. The SMV-based syntactic foams have many potential applications, including actuators, insulators, and sandwich cores. However, there is a knowledge gap in understanding the effect of the HGM volume fraction on different material properties and behaviors. In this study, we prepared an SMV-based syntactic foam to investigate the influence of the HGM volume fractions on a broad set of properties. Four sample groups, containing 40, 50, 60, and 70% HGMs by volume, were tested and compared to a control pure SMV group. A series of analyses and various chemical, physical, mechanical, thermal, rheological, and functional experiments were conducted to explore the feasibility of ultralight foams. Notably, the effect of HGM volume fractions on the rheological properties was methodically evaluated. The self-healing capability of the syntactic foam was also assessed for healing at low and high temperatures. This study proves the viability of manufacturing multifunctional ultralightweight SMV-based syntactic foams, which are instrumental for designing ultralightweight engineering structures and devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788861PMC
http://dx.doi.org/10.1021/acsapm.3c01749DOI Listing

Publication Analysis

Top Keywords

syntactic foams
16
smv-based syntactic
12
hgm volume
12
shape memory
8
syntactic foam
8
volume fractions
8
syntactic
6
foams
5
lightweight shape
4
memory vitrimer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!