Zinc Transporters Serve as Prognostic Predictors and their Expression Correlates with Immune Cell Infiltration in Specific Cancer: A Pan-cancer Analysis.

J Cancer

School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.

Published: January 2024

The disruption of zinc (Zn) homeostasis has been implicated in cancer development and progression through various signaling pathways. Maintaining intracellular zinc balance is crucial in the context of cancer. Human cells rely on two families of transmembrane transporters, SLC30A/ZNT and SLC39A/ZIP, to coordinate zinc homeostasis. While some ZNTs and ZIPs have been linked to cancer progression, limited information is available regarding the expression patterns of zinc homeostasis-related genes and their potential roles in predicting prognosis and developing therapeutic strategies for specific cancers. In this study, a systematic analysis was conducted to examine the expression of all genes from the SLC30A and SLC39A families at both mRNA and protein levels across different cancers. As a result, three SLC39A genes (, , and ) were found to be significantly dysregulated in specific cancers, including cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), liver hepatocellular carcinoma (LIHC), pancreatic adenocarcinoma (PAAD), and kidney renal papillary cell carcinoma (KIRP). Moreover, the dysregulation of these genes was tightly associated with the prognosis of patients with those cancers. Furthermore, we found that the gene exhibited the lowest mutation frequency in KIRP, whereas mutations in were found to significantly impact overall survival (OS), disease-free (DF), and progress-free survival (PFS) in cancer patients, particularly in those with PAAD. Additionally, immune infiltration analysis revealed that , , and may function as immune regulators in cancers. This provides new insights into understanding the complex relationship between zinc homeostasis and cancer progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788725PMC
http://dx.doi.org/10.7150/jca.87880DOI Listing

Publication Analysis

Top Keywords

zinc homeostasis
12
cancer progression
8
specific cancers
8
cell carcinoma
8
zinc
6
cancer
6
cancers
5
zinc transporters
4
transporters serve
4
serve prognostic
4

Similar Publications

Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.

View Article and Find Full Text PDF

The widespread use of zinc oxide nanoparticles (ZnO NPs) in various products raises significant ecological concerns due to their potential toxic effects in aquatic environments. This study employed the Asian green mussel (Perna viridis) as a model to explore the molecular and ecological risks of ZnO NP exposure using transcriptomics. Mussels exposed to ZnO NPs (5, 10, and 15 mg/L) for 28 days showed significant gene expression changes in gill tissues, affecting immune response, calcium homeostasis, and cellular stress.

View Article and Find Full Text PDF

ZFAND6 is a zinc finger protein that interacts with TNF receptor-associated factor 2 (TRAF2) and polyubiquitin chains and has been linked to tumor necrosis factor (TNF) signaling. Here, we report a previously undescribed function of ZFAND6 in maintaining mitochondrial homeostasis by promoting mitophagy. Deletion of ZFAND6 in bone marrow-derived macrophages (BMDMs) upregulates reactive oxygen species (ROS) and the accumulation of damaged mitochondria due to impaired mitophagy.

View Article and Find Full Text PDF

The role of GATA4 in mesenchymal stem cell senescence: A new frontier in regenerative medicine.

Regen Ther

March 2025

Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.

The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology.

View Article and Find Full Text PDF

The role of serum zinc and selenium levels in etiology of febrile seizures.

Clin Exp Pediatr

January 2025

Department of Pediatrics, Division of Child Neurology, Fırat University Faculty of Medicine, Elazıg, Turkey.

Background: Febrile seizures (FSs) are the most common form of childhood seizures. Determining the role of trace elements in the pathophysiology of FSs will contribute to the management of FSs by pediatricians.

Purpose: This study aimed to investigate the effects of zinc and selenium on the nervous system and how they may influence the risk of FSs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!