Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transition metal dichalcogenides (TMDs) are promising 2D nanomaterials for diverse applications, but their intrinsic chemical inertness hinders their modification. Herein, a novel approach is presented for the photocatalytic acylation of 2H-MoS and 2H-MoSe, utilizing tetrabutyl ammonium decatungstate ((nBuN)WO) polyoxometalate complex as a catalyst and a conventional halogen lamp as a source of irradiation. By harnessing the semiconducting properties of TMDs, new avenues emerge for the functionalization of these materials. This novel photocatalytic protocol constitutes the first report on the chemical modification of 2D nanomaterials based on a catalytic protocol and applies to both aliphatic and aromatic substrates. The scope of the decatungstate-photocatalyzed acylation reaction of TMDs is explored by employing an alkyl and an aromatic aldehyde and the success of the methodology is confirmed by diverse spectroscopic, thermal, microscopy imaging, and redox techniques. This catalytic approach on modifying 2D nanomaterials introduces the principles of atom economy in a functionalization protocol for TMDs. It marks a transformative shift toward more sustainable and efficient methodologies in the realm of TMD modification and nanomaterial chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202311045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!