Prostate cancer (PC), particularly its metastatic castration-resistant form (mCRPC), is a leading cause of cancer-related deaths among men in the Western world. Traditional systemic treatments, including hormonal therapy and chemotherapy, offer limited effectiveness due to tumors' inherent resistance to these therapies. Moreover, they often come with significant side effects. We have developed a delivery method using a tumor-cell-specific heptamethine carbocyanine dye (DZ) designed to transport therapeutic agents directly to tumor cells. This research evaluated simvastatin (SIM) as the antitumor payload because of its demonstrated chemopreventive effects on human cancers and its well-documented safety profile. We designed and synthesized a DZ-SIM conjugate for tumor cell targeting. PC cell lines and xenograft tumor models were used to assess tumor-cell targeting specificity and killing activity and to investigate the corresponding mechanisms. DZ-SIM treatment effectively killed PC cells regardless of their androgen receptor status or inherent therapeutic resistance. The conjugate targeted and suppressed xenograft tumor formation without harming normal cells of the host. In cancer cells, DZ-SIM was enriched in subcellular organelles, including mitochondria, where the conjugate formed adducts with multiple proteins and caused the loss of transmembrane potential, promoting cell death. The DZ-SIM specifically targets PC cells and their mitochondria, resulting in a loss of mitochondrial function and cell death. With a unique subcellular targeting strategy, the conjugate holds the potential to outperform existing chemotherapeutic drugs. It presents a novel strategy to circumvent therapeutic resistance, offering a more potent treatment for mCRPC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11025579PMC
http://dx.doi.org/10.1021/acs.molpharmaceut.3c00993DOI Listing

Publication Analysis

Top Keywords

prostate cancer
8
xenograft tumor
8
therapeutic resistance
8
cell death
8
conjugate
5
cells
5
overcoming resistance
4
resistance prostate
4
cancer therapy
4
therapy dz-simvastatin
4

Similar Publications

Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.

View Article and Find Full Text PDF

Aims: We aimed to perform a retrospective cohort study using the Centers for Disease Control and Prevention's (CDC's) Wide-Ranging Online Data for Epidemiologic Research (WONDER) database to analyse the trends in cardiovascular disease (CVD)-related mortality in patients with myeloproliferative neoplasms (MPNs) from 1999 to 2020.

Methods And Results: We analysed the death certificate data from the CDC WONDER database from 1999 to 2020 for CVD with co-morbid myeloproliferative disorders in the US population. Age-adjusted mortality rates (AAMRs) and 95% confidence intervals (CIs) were computed per 1 million population by standardizing crude mortality rates to the 2000 US census population.

View Article and Find Full Text PDF

Doublecortin-like kinase 1 (DCLK1) has been revealed to be involved in modulating cancer stemness and tumor progression, but its role in prostate cancer (PCa) remains obscure. Castration-resistant and metastatic PCa exhibit aggressive behaviors, and current therapeutic approaches have shown limited beneficial effects on the overall survival rate of patients with advanced PCa. This study aimed to investigate the biological role and potential molecular mechanism of DCLK1 in the progression of PCa.

View Article and Find Full Text PDF

Uncovering the Role of in Prostate Cancer: Insights from Genetic and Expression Analyses.

J Cancer

January 2025

Department of Urology, College of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.

Biochemical recurrence (BCR) is a critical concern in prostate cancer management; however, its underlying genetic determinants remain poorly understood. The () gene family is involved in cellular detoxification and biosynthetic processes and has been implicated in various cancers. This study investigated the association between the family members and prostate cancer recurrence.

View Article and Find Full Text PDF

Background And Objectives: Prostate cancer is the second most frequently diagnosed cancer in men aged 65 years and older globally. The association of prostate cancer with deranged lipid profile and insulin levels is inconsistent and not well understood. This study aimed to analyze the serum levels of lipids, insulin, insulin-like growth factor-1 (IGF-1) and testosterone and to identify their association with the risk of benign prostatic hyperplasia, prostate cancer and its grading.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!