Background And Purpose: Perfusion parameters obtained in F-18 FDG PET/CT performed for staging purposes in breast cancers may provide additional information about tumor biology as well as glucose metabolism. The aim of this study was to evaluate throughout F-18 FDG PET/CT the relationship between blood flow and glucose metabolism and histological parameters of the primary tumor, normal mammary gland, and axillary lymph nodes in breast cancer patients.

Materials And Methods: Sixty six female patients (mean age 51 y ± 12,81) were prospectively included to this study. We performed dynamic blood flow (f) study that started with 296-444 MBq (8-12 mCi) F-18 FDG injection and lasted for 10 minutes, and glucose metabolism (m) imaging one hour later. On each frame, mean activity concentration (AC) values (Bq/mL) were recorded on a spherical volume of interest (VOI) having a volume of ~ 1 cm3 on the hottest voxel of primary tumor (T), across normal breast gland (NG) and ipsilaterally axillary lymph nodes (iLN). Correlations among PET parameters and estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (c-erbB2) and Ki67 index were analyzed.

Results: T volume (TV) ranged from 1.1 to 85.28 cm3 [median (IR): 6.44 (11.78)]. There were positive correlations between c-erbB2 and TACf and between c-erbB2 and iLNACf (p = 0.045, r = + 0.248; p = 0.050, r = + 0.242). In the ER positive (ERP) patients, TV and TACm were significantly lower than those of ER negative (ERN) (respectively p = 0.044 and p = 0.041). In patients with two positive Ki-67 indices, iLN-SUVmax was significantly higher than one-positive patients (p = 0.020). There was a negative correlation between NGACm and histological grade of tumor (p = 0.005, r = - 0.365).

Conclusions: Breast cancer shows differences in progression, metastasis and survival due to its diversity in terms of molecular, biological and angiogenesis. High glucose metabolism in breast cancers is associated with tumor aggressiveness. Being able to examine tumor tissue characteristics such as blood flow and glucose metabolism with a single diagnostic technique and to reveal its relationship with histological parameters can provide a reliable pretherapeutic evaluation in breast cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10792953PMC
http://dx.doi.org/10.1186/s12905-023-02858-3DOI Listing

Publication Analysis

Top Keywords

glucose metabolism
20
f-18 fdg
16
axillary lymph
12
fdg pet/ct
12
breast cancer
12
breast cancers
12
blood flow
12
breast
8
normal breast
8
flow glucose
8

Similar Publications

Impact of remnant cholesterol on short-term and long-term prognosis in patients with prediabetes or diabetes undergoing coronary artery bypass grafting: a large-scale cohort study.

Cardiovasc Diabetol

January 2025

State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Rd, Xicheng District, Beijing, 100037, People's Republic of China.

Background: Remnant cholesterol (remnant-C) contributes to atherosclerotic cardiovascular disease (ASCVD), particularly in individuals with impaired glucose metabolism. Patients with impaired glucose metabolism and ASCVD remain at significant residual risk after coronary artery bypass grafting (CABG). However, the role of remnant-C in this population has not yet been investigated.

View Article and Find Full Text PDF

Trimethyltin chloride (TMT), an organotin compound with potent neurotoxicity, is widely used as a heat stabilizer for plastics. However, the precise pathogenic mechanism of TMT remains incompletely elucidated, and there persists a dearth of sensitive detection methodologies for early diagnosis of TMT. In this study, Sprague-Dawley rats were treated with 10 mg/kg TMT to simulate acute exposure in humans.

View Article and Find Full Text PDF

Introduction: Glycated haemoglobin (HbA1c) is currently the gold standard for assessing glycaemic control in diabetes, given the established relationship with microvascular and macrovascular complications in this condition. However, HbA1c is affected by non-glycaemic factors, while also failing to provide data on hypoglycaemic exposure and glucose variability, which are associated with adverse vascular outcomes. Continuous glucose monitoring (CGM)-derived glucose metrics provide a more comprehensive assessment of glycaemia, but their role in predicting future vascular complications remains unclear.

View Article and Find Full Text PDF

Layer-by-Layer (LbL) self-assembly encapsulation is a promising technology for the protection and delivery of lactic acid bacteria. However, laboratory-scale encapsulation is often time-consuming, involves intensive protocols tailored for small-scale operations, requires substantial amounts of energy and water, and results in a low yield of encapsulated biomass. Scaling-up this process to a bench-bioreactor scale is not simply a matter of increasing culture volume as different key parameters (not particularly relevant at lab scale) become critical, including biomass production, the number of polymer layers, and the biomass-to-polymer mass ratio.

View Article and Find Full Text PDF

The effect of carbohydrates with different levels of digestibility on energy metabolism in vivo under hypobaric hypoxic conditions.

Carbohydr Polym

March 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.

Current strategies for improving energy supply in hypobaric hypoxic environments are limited. Therefore, this study investigates the effects of four carbohydrates with different levels of digestibility on energy metabolism in vivo in hypobaric hypoxic environments. First, we characterized the four types of carbohydrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!