Background: Pod shell thickness (PST) is an important agronomic trait of peanut because it affects the ability of shells to resist pest infestations and pathogen attacks, while also influencing the peanut shelling process. However, very few studies have explored the genetic basis of PST.
Results: An F segregating population derived from a cross between the thick-shelled cultivar Yueyou 18 (YY18) and the thin-shelled cultivar Weihua 8 (WH8) was used to identify the quantitative trait loci (QTLs) for PST. On the basis of a bulked segregant analysis sequencing (BSA-seq), four QTLs were preliminarily mapped to chromosomes 3, 8, 13, and 18. Using the genome resequencing data of YY18 and WH8, 22 kompetitive allele-specific PCR (KASP) markers were designed for the genotyping of the F population. Two major QTLs (qPSTA08 and qPSTA18) were identified and finely mapped, with qPSTA08 detected on chromosome 8 (0.69-Mb physical genomic region) and qPSTA18 detected on chromosome 18 (0.15-Mb physical genomic region). Moreover, qPSTA08 and qPSTA18 explained 31.1-32.3% and 16.7-16.8% of the phenotypic variation, respectively. Fifteen genes were detected in the two candidate regions, including three genes with nonsynonymous mutations in the exon region. Two molecular markers (Tif2_A08_31713024 and Tif2_A18_7198124) that were developed for the two major QTL regions effectively distinguished between thick-shelled and thin-shelled materials. Subsequently, the two markers were validated in four F lines selected.
Conclusions: The QTLs identified and molecular markers developed in this study may lay the foundation for breeding cultivars with a shell thickness suitable for mechanized peanut shelling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790476 | PMC |
http://dx.doi.org/10.1186/s12864-024-10005-x | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia.
Protein-nanoparticle interactions and the resulting corona formation play crucial roles in the behavior and functionality of nanoparticles in biological environments. In this study, we present a comprehensive analysis of protein corona formation with superfolder green fluorescent protein (sfGFP) and bovine serum albumin in silica nanoparticle dispersions using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). For the first time, we subtracted the scattering of individual proteins in solution and individual nanoparticles from the protein-nanoparticle complexes.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.
Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Chongqing University, Chongqing 400045, China.
The purpose of this study is to analyze the large deflection problem of bimodular functionally graded truncated thin conical shells under the transverse mechanical load and non-uniform thermal load, in which two different boundary constraints of the truncated shell with two ends simply supported and fully fixed are considered. It is assumed that the temperature distribution along the thickness direction satisfies the Fourier law of heat transfer, and the material properties change exponentially along the thickness direction while different properties in tension and compression are considered. The geometric equation of the conical shell is established based on the equivalent method of curvature correction of von-Kármán deformation theory, and the analytical solution of the problem is obtained by Ritz method.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland.
Chicken eggshells are a useful waste that may be used somewhere rather than being placed in landfills. They are created in poultry hatcheries, the food sector (making pasta, cakes, and egg products), or our homes. In this project, this study aimed to investigate the possibility of producing plywood using a filler in the gluing process in the form of ground eggshells.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
To investigate the effect of tannic acid (TA) on the growth, disease resistance, and intestinal health of Chinese soft-shelled turtles, individual turtles were fed with 0 g/kg (CG), 0.5 g/kg, 1 g/kg, 2 g/kg, and 4 g/kg TA diets for 98 days. Afterwards, the turtles' disease resistance was tested using .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!