The exclusive behaviour of nanofluid has been actively emphasized due to the determination of improved thermal efficiency. Hence, the aim of this study is to highlight the laminar boundary layer axisymmetric stagnation point flow of Casson nanofluid past a stretching plate/cylinder under the influence of thermal radiation and suction/injection. Nanofluid comprises water and FeO as nanoparticles. In this article, a novel casson nanofluid model has been developed and studied on stretchable flat plate or circular cylinder. Adequate rational assumptions (velocity components) are employed for the transformation of the governing partial-differential equations into a group of non-dimensional ordinary-differential formulas, which are then solved analytically. The momentum and energy equations are solved through the complementary error function method and scaling quantities. Using various figures, the effects of essential factors on the nanofluid flow, heat transportation, and Nusselt number, are determined and explored. From obtained results, it is observed that the velocity field diminishes owing to magnification in stretching parameter [Formula: see text] and Casson fluid parameter [Formula: see text]. The temperature field increases by amplifying radiation [Formula: see text], and solid volume fraction parameter [Formula: see text]. The research is applicable to developing procedures for electric-conductive nanomaterials, which have potential applications in aircraft, smart coating transport phenomena, industry, engineering, and other sectors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10791655 | PMC |
http://dx.doi.org/10.1038/s41598-024-51963-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!