Assessment of refining efficiency during the refining cycle in a foundry degassing unit in industrial conditions.

Sci Rep

Die-Casting Division, MOTOR JIKOV Slévárna a.S, Kněžskodvorská, 2277, 370 04, České Budějovice, Czech Republic.

Published: January 2024

The article focuses on the issue of improving the efficiency of a Foundry Degassing Unit (FDU) via operational testing of aluminium alloys during casting at MOTOR JIKOV Slévárna a.s.. As part of the research, the efficiency of the refining process in the FDU was assessed. The main emphasis was placed on determining the moment of the greatest decrease in the hydrogen content in the melt and whether it is possible to shorten the refining cycle. The values of the Dichte Index were determined, on the basis of which the degassing curve was plotted and the progress of the melt degassing was assessed. To ensure the required quality of castings, the maximum allowable value of the Dichte Index ranged from 3 to 4%. During the process, the temperature drop during the refining cycle was also determined. The total temperature drop from pouring the melt into the ladle to the end of refining ranged from 26 to 32 °C, which is within the acceptable limits of the foundry. Based on the knowledge resulting from the operational experiments, recommendations were formulated to optimize the refining technology at the FDU for the MOTOR JIKOV Slévárna a.s. foundry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10791990PMC
http://dx.doi.org/10.1038/s41598-024-51914-xDOI Listing

Publication Analysis

Top Keywords

refining cycle
12
efficiency refining
8
foundry degassing
8
degassing unit
8
motor jikov
8
jikov slévárna
8
temperature drop
8
refining
6
assessment refining
4
refining efficiency
4

Similar Publications

Predictive value of CT-based and AI-reconstructed 3D-TAPSE in patients undergoing transcatheter tricuspid valve repair.

Front Cardiovasc Med

January 2025

Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum, NRW, Ruhr-Universität Bochum, Medizinische Fakultät OWL (Universität Bielefeld), Bad Oeynhausen, Germany.

Background: The tricuspid annular plane systolic excursion (TAPSE) assessed by echocardiography has failed in predicting outcomes in patients with severe tricuspid regurgitation (TR) undergoing transcatheter tricuspid valve intervention (TTVI). Considering the complex shape of the tricuspid annulus and right ventricle, as well as the difficult echocardiographic image acquisition of the right heart, cardiac computed tomography (CT) might be superior for the analysis of the annular excursion. Thus, this study aimed to analyze whether CT-captured TAPSE provides additional value in predicting outcomes after TTVI.

View Article and Find Full Text PDF

In this study, we propose a double-layer elliptical nanohole array (DLEN) and investigate its chiral properties using the finite element method. The DLEN structure simultaneously exhibited asymmetric reflection (AR), circular dichroism (CD), and asymmetric transmission (AT) effects with specific measured values. By analyzing the full cycle of plasmon resonance modes, we identified that the local rotational resonance excited by circular polarized light (CPL) is important in the conversion of right circularly polarized (RCP) and left circularly polarized (LCP) light upon reflection and transmission.

View Article and Find Full Text PDF

Mitochondrial transplantation (MTx) offers a promising therapeutic approach to mitigate mitochondrial dysfunction in conditions such as ischemia-reperfusion (IR) injury. The quality and viability of donor mitochondria are critical to MTx success, necessitating the optimization of isolation protocols. This study aimed to assess a rapid mitochondrial isolation method, examine the relationship between mitochondrial size and membrane potential, and evaluate the potential benefits of Poloxamer 188 (P-188) in improving mitochondrial quality during the isolation process.

View Article and Find Full Text PDF

Crystal structure of submicron-sized sulfur particles using 3D ED obtained in atmospheric conditions.

Acta Crystallogr C Struct Chem

February 2025

Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium.

Lithium-sulfur batteries are a promising candidate for the next generation of rechargeable batteries. Despite extensive research on this system over the last decade, a complete understanding of the phase transformations has remained elusive. Conventional in-situ powder X-ray diffraction has struggled to determine the unit cell and space group of the polysulfides formed during charge and discharge cycles due to the high solubility of these solid products in the liquid electrolyte.

View Article and Find Full Text PDF

We analyzed the thermal, structural, and dynamic properties of maghemite using classical molecular dynamics, focusing on bulk and nanoparticle systems. We explored their behavior when heated to high temperatures (above the melting point) and during cooling, as well as under thermal cycles ending at intermediate temperatures. Our findings show that in the bulk system, both the tetrahedral and octahedral iron sub-lattices undergo a phase transition prior to melting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!