Laminar graphene oxide (GO) is a promising candidate material for next-generation highly water-permeable membranes. Despite extensive research, there is little information known concerning GO's ion-sieving properties at high acidic/basic pH and temperatures. In this study, the ion-blockage properties of the pristine GO and GO/zinc oxide (ZnO) nanocomposite membranes were tested using a non-pressure-driven filtration setup over a wide range of pH and temperatures. The ZnO nanoparticles within the composite membranes were synthesized via the room-temperature oxidation of zinc acetate and zinc acrylate precursors and were uniformly distributed across the composite membrane. It is observed that partially replacing the zinc acetate precursor with zinc acrylate improves the blockage performance of the composite membranes under extreme basic conditions by 42%. Moreover, photocatalytically-reduced composite membranes blocked copper sulfate ions 28% more than as-prepared composite membranes. Further, it was discovered that the composition of the membrane plays a vital role in its ion blockage performance at higher temperatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10791694 | PMC |
http://dx.doi.org/10.1038/s41598-024-51309-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!