Huangqi Baihe Granules alleviate hypobaric hypoxia-induced acute lung injury in rats by suppressing oxidative stress and the TLR4/NF-κB/NLRP3 inflammatory pathway.

J Ethnopharmacol

Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China. Electronic address:

Published: April 2024

Ethnopharmacological Relevance: Huangqi Baihe Granules (HQBHG) are a modified formulation based on the traditional recipe "Huangqi Baihe porridge" and the Dunhuang medical prescription "Cistanche Cistanche Soup." The Herbal medicine moistens the lungs and tones the kidneys in addition to replenishing Qi and feeding Yin, making it an ideal choice for enhancing adaptability to high-altitude hypoxic environments.

Aim Of The Study: The purpose of this study was to examine a potential molecular mechanism for the treatment and prevention of hypoxic acute lung injury (ALI) in rats using Huangqi Baihe Granules.

Materials And Methods: The HCP-III laboratory animal low-pressure simulation chamber was utilized to simulate high-altitude environmental exposure and establish an ALI model in rats. The severity of lung damage was evaluated using a battery of tests that included spirometry, a wet/dry lung ratio, H&E staining, and transmission electron microscopy. Using immunofluorescence, the amount of reactive oxygen species (ROS) in lung tissue was determined. Superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and myeloperoxidase (MPO) levels in lung tissue were determined using this kit. Serum levels of proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta), and antiinflammatory cytokines like interleukin-10 (IL-10) were measured using an enzyme-linked immunosorbent assay kit. Gene expression changes in lung tissue were identified using transcriptomics, and the relative expression of proteins and mRNA involved in the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB p65)/Nod-like receptor protein 3 (NLRP3) pathway were determined using western blotting and quantitative real-time PCR.

Results: HQBHG was shown to enhance lung function considerably, decrease the wet/dry ratio of the lungs, attenuate lung tissue damage, suppress ROS and MDA formation, and increase SOD activity and GSH expression. The research also demonstrated that HQBHG inhibited the activation of the TLR4/NF-κB p65/NLPR3 signaling pathway in lung tissue, reducing the release of downstream pro-inflammatory cytokines.

Conclusions: HQBHG exhibits potential therapeutic effects against ALI induced by altitude hypoxia through suppressing oxidative stress and inflammatory response. This suggests it may be a novel drug for treating and preventing ALI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2024.117765DOI Listing

Publication Analysis

Top Keywords

lung tissue
20
huangqi baihe
12
lung
10
baihe granules
8
acute lung
8
lung injury
8
suppressing oxidative
8
oxidative stress
8
tissue determined
8
tissue
5

Similar Publications

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

Fluid secretion and luminal pressure control lateral branching morphogenesis in the embryonic avian lung.

Dev Biol

January 2025

Department of Bioengineering, University of Texas at Dallas, Richardson, TX; Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX. Electronic address:

During lung development, the embryonic airway originates as a wishbone-shaped epithelial tube, which undergoes a series of branching events to build the bronchial tree. This process depends crucially on cell proliferation and is thought to involve distinct branching modes: lateral branching, wherein daughter branches emerge along the length of a parent branch, and bifurcations, wherein the tip of a parent branch splits to form two new daughter branches. The developing airway is fluid-filled, and previous studies have shown that altered luminal pressure can influence rates of branching morphogenesis.

View Article and Find Full Text PDF

The anti-inflammatory role of miR-23b-3p (miR-23b) is known in autoimmune diseases like multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. However, its role in sepsis-related acute lung injury (ALI) and its effect on macrophages in ALI remain unexplored. This investigation aimed to evaluate miR-23b's therapeutic potential in macrophages in the context of ALI.

View Article and Find Full Text PDF

In injured and diseased tissues, changes in molecular and cellular compositions, as well as tissue architecture, lead to alterations in both physiological and physical characteristics. Notably, the electrical properties of tissues, which can be characterized as bioelectrical impedance (bioimpedance), are closely linked to the health and pathological conditions of the tissues. This highlights the significant role of quantitatively characterizing these electrical properties in improving the accuracy and speed of diagnosis and prognosis.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!