Polybrominated diphenyl ethers (PBDE) are priority contaminants historically used as flame retardants. PBDEs are known to occur in wastewater biosolids posing potential concerns with the beneficial land application of the biosolids. This study evaluated the removal of 21 congeners in nine full-scale sludge treatment systems including pelletization (P), alkaline stabilization (AS), and aerobic (AE) and anaerobic (AN) digestion. It is the first study to conduct a mass balance analysis of a broad spectrum of PBDEs during physical, chemical, and biological sludge treatment. The PBDE congener pattern in raw sludge and biosolids samples was consistent with commercial formulations. The fully brominated congener BDE-209 dominated biosolids from all sites with an average concentration of 620 ng/g dry weight (dw), followed by BDE-99 (173 ng/g dw) and BDE-47 (162 ng/g dw). Mass balance analysis on the P and AS processes showed no change in PBDE mass flows with treatment. However, aerobic and anaerobic digestion processes reported significant levels of removal and formation of individual congeners, though the results were not consistent between facilities. One aerobic digestion process (AE2) reported an overall average removal of 48%, whereas the other (AE1) reported very high levels of accumulation of tri- and tetraBDE congeners. Similarly, there were significant variations in PBDE behavior across the five anaerobic digestion plants studied. The plant with the longest solids retention time (SRT) (AN1) reported a moderate removal (50%) of overall PBDE loading and lower congeners, whereas other plants (AN2-AN5) showed significant low (-19%) to high (-166%) levels of formation of lower congeners. The results suggest that reduced SRTs result in formation of lower congeners while extended SRTs can lead to moderate removal of some PBDEs. Conventional sludge treatment result in low to moderate PBDE removal and advanced thermal conversion technologies may be needed to improve the contaminant removal during sludge treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.141203 | DOI Listing |
Chemosphere
January 2025
International Science & Technology Cooperation Centre for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China. Electronic address:
This study innovatively developed a stacked hybrid constructed wetland, integrating the advantages of both free-water surface and subsurface flow constructed wetlands for enhanced treatment of sewage plant effluent. The effects of three different operation modes-Anoxic subsurface flow, Oxic subsurface flow, and Oxic subsurface flow with step-feeding-on sewage plant effluent treatment were thoroughly examined. Results indicated that all three modes exhibited excellent pollutant removal capabilities.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America; Organization for Public Health and Environment Management, Lalitpur, Nepal; Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, United States of America; Center of Research Excellence in Wastewater based Epidemiology, Morgan State, Baltimore, MD, United States of America. Electronic address:
Given their abundance in human fecal samples, crAssphage and Pepper Mild Mottle Virus (PMMoV) are proposed as indicators for human enteric viruses. This study measured crAssphage and PMMoV in raw sewage samples (n = 24) between June 2014 and May 2015 from two wastewater treatment facilities in southern Arizona, USA. Both crAssphage and PMMoV were detected in nearly 100% of samples.
View Article and Find Full Text PDFBioresour Technol
January 2025
College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
Ammonia-oxidizing bacteria (AOB) sourced from an aerobic granular sludge (AGS) process were rapidly enriched by progressively increasing ammonia nitrogen (NH-N) loads, achieving a Nitrosomonas abundance of 20.7 % and a nitrite accumulation rate exceeding 80 %. Mycelial pellets formed by Cladosporium, isolated from the same AGS system, provided a porous surface structure for the immobilization of the enriched AOB, creating mycelial pellet/AOB composites.
View Article and Find Full Text PDFSci Total Environ
January 2025
Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand. Electronic address:
Tomato brown rugose fruit virus (ToBRFV) has emerged as a major plant pathogen with the potential to spread through contaminated wastewater, posing risks to agriculture and public health. This study evaluated ToBRFV as a human-specific microbial source tracking (MST) marker in Thailand, comparing its performance to crAssphage. Using qPCR assays, ToBRFV was detected in 62.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China. Electronic address:
The microalgal-bacterial consortium (MBC) system is recognized as an advanced approach for nitrogen and phosphorus removal in wastewater treatment. However, the influence of microalgae on bacterial community dynamics and niche differentiation across varying seasonal conditions remains unexplored. In this study, we established a pilot-scale continuous-flow MBC system to disentangle, for the first time, the impact of microalgae on seasonal bacterial community succession by conducting monthly time-series sampling over a full seasonal cycle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!