The health of astronauts during space travel to new celestial bodies in the Solar System is a critical factor in the planning of a mission. Despite cleaning and decontamination protocols, microorganisms from the Earth have been and will be identified on spacecraft. This raises concerns for human safety and planetary protection, especially if these microorganisms can evolve and adapt to the new environment. In this study, we examined the tolerance of clinically relevant nonfastidious bacterial species that originate from environmental sources (, , , and ) to simulated martian conditions. Our research showed changes in growth and survival of these species in the presence of perchlorates, under desiccating conditions, exposure to ultraviolet radiation, and exposure to martian atmospheric composition and pressure. In addition, our results demonstrate that growth was enhanced by the addition of a martian regolith simulant to the growth media. Additional future research is warranted to examine potential changes in the infectivity, pathogenicity, and virulence of these species with exposure to martian conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ast.2023.0057DOI Listing

Publication Analysis

Top Keywords

martian conditions
12
exposure martian
8
martian
5
survival environment-derived
4
environment-derived opportunistic
4
opportunistic bacterial
4
bacterial pathogens
4
pathogens martian
4
conditions
4
conditions concern
4

Similar Publications

Resilience of to Simulated Atmospheric Gas Compositions of Mars, Jupiter, and Titan.

Life (Basel)

January 2025

Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece.

This study investigates the resilience of the unicellular green microalga to extreme atmospheric conditions simulating those of Mars, Jupiter, and Titan. Using Earth as a control, experiments were conducted under autotrophic and mixotrophic conditions to evaluate the organism's photosynthetic efficiency, oxygen production, and biomass growth over 2, 5, and 12 days. Photosynthetic performance was analyzed through chlorophyll a fluorescence induction (JIP-test), metabolic activity via gas chromatography, and biomass accumulation measurements.

View Article and Find Full Text PDF

Hydrogenotrophic methanogenesis at 7-12 mbar by Methanosarcina barkeri under simulated martian atmospheric conditions.

Sci Rep

January 2025

Department of Plant Pathology, Space Life Sciences Lab, University of Florida, 505 Odyssey Way, Exploration Park,, Merritt Island, FL, 32953, USA.

Mars, with its ancient history of long-lived habitable environments, continues to captivate researchers exploring the potential for extant life. This study investigates the biosignature potential of Martian methane by assessing the viability of hydrogenotrophic methanogenesis in Methanosarcina barkeri MS under simulated Martian surface conditions. We expose M.

View Article and Find Full Text PDF

In-space biomanufacturing provides a sustainable solution to facilitate long-term, self-sufficient human habitation in extraterrestrial environments. However, its dependence on Earth-supplied feedstocks renders in-space biomanufacturing economically nonviable. Here, we develop a process termed alternative feedstock-driven in-situ biomanufacturing (AF-ISM) to alleviate dependence on Earth-based resupply of feedstocks.

View Article and Find Full Text PDF

Antarctic nematodes survival in Martian and Lunar regolith simulants under terrestrial conditions.

An Acad Bras Cienc

January 2025

Universidade de Brasília, Laboratório de Criptógamas, Departamento de Botânica, Campus Universitário Darcy Ribeiro, Bloco D, 1° Andar, 70910-900 Brasília, DF, Brazil.

The exploration of extraterrestrial environments has become a focal point of scientific inquiry, driven by advancements in technology and a growing interest in the potential for life beyond Earth. This study investigates the adaptability of Antarctic nematodes, known for thriving in extreme cold and isolation, to simulated Martian (MGS-1) and Lunar (LMS-1) soils. The experiment revealed differential responses in nematode survivability to the two simulants, with Lunar soil demonstrating better adaptability compared to Martian soil.

View Article and Find Full Text PDF

Exploration missions to Mars rely on landers or rovers to perform multiple analyses over geographically small sampling regions, while landing site selection is done using large-scale but low-resolution remote-sensing data. Utilizing Earth analog environments to estimate small-scale spatial and temporal variation in key geochemical signatures and biosignatures will help mission designers ensure future sampling strategies meet mission science goals. Icelandic lava fields can serve as Mars analog sites due to conditions that include low nutrient availability, temperature extremes, desiccation, and isolation from anthropogenic contamination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!