The house fly, Musca domestica, is a cosmopolitan species known for its pestiferous nature and potential to mechanically vector numerous human and animal pathogens. Control of adult house flies often relies on insecticides formulated into food baits. However, due to the overuse of these baits, insecticide resistance has developed to all insecticide classes currently registered for use in the United States. Field populations of house flies have developed resistance to imidacloprid, the most widely used neonicotinoid insecticide for fly control, through both physiological and behavioral resistance mechanisms. In the current study, we conducted a comprehensive analysis of the inheritance and dominance of behavioral resistance to imidacloprid in a lab-selected behaviorally resistant house fly strain. Additionally, we conducted feeding preference assays to assess the feeding responses of genetic cross progeny to imidacloprid. Our results confirmed that behavioral resistance to imidacloprid is inherited as a polygenic trait, though it is inherited differently between male and female flies. We also demonstrated that feeding preference assays can be instrumental in future genetic inheritance studies as they provide direct insight into the behavior of different strains under controlled conditions that reveal, interactions between the organism and the insecticide. The findings of this study carry significant implications for pest management and underscore the need for integrated pest control approaches that consider genetic and ecological factors contributing to resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1744-7917.13326 | DOI Listing |
J Transl Med
January 2025
Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, Zhejiang, 310003, China.
Background: The most common malignant type of kidney cancer is clear cell renal cell carcinoma (ccRCC). The expression levels of hyaluronan-mediated motility receptor (HMMR) in many tumor types are significantly elevated. HMMR is closely associated with tumor-related progression, treatment resistance, and poor prognosis, and has yet to be fully investigated in terms of its expression patterns and molecular mechanisms of action in ccRCC.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Beijing Life Science Academy, Beijing, 102200, China.
Background: Fungal communities around plant roots play crucial roles in maintaining plant health. Nonetheless, the responses of fungal communities to bacterial wilt disease remain poorly understood. Here, the structure and function of fungal communities across four consecutive compartments (bulk soil, rhizosphere, rhizoplane and root endosphere) were investigated under the influence of bacterial wilt disease.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Health Promotion and Health Behavior, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
Background: Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains a global health crisis, especially in sub-Saharan Africa, where high human immune virus (HIV) prevalence exacerbates the problem. The co-infection of TB and HIV creates a deadly combination, increasing susceptibility and complicating disease progression and treatment. Ethiopia, classified as a high-burden country, faces significant challenges despite efforts to reduce co-infection rates.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 520521, China.
Background: Calmodulin-binding transcription activator (CAMTA) proteins play significant roles in signal transduction, growth and development, as well as abiotic stress responses, in plants. Understanding their involvement in the low-temperature stress response of teak is vital for revealing cold resistance mechanisms.
Results: Through bioinformatics analysis, the CAMTA gene family in teak was examined, and six CAMTA genes were identified in teak.
Sci Rep
January 2025
School of Civil Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, 600127, India.
The carbon footprint associated with cement production, coupled with depletion of natural resources and climate change, underscores the need for sustainable alternatives. This study explores the effect of metakaolin (MK) and nano-silica (NS) on concrete's engineering performance and environmental impact. Initially, compressive, tensile, and flexural strength tests, along with durability assessments like water absorption, sorptivity, rapid chloride permeability, and resistance to acid and sulphate attacks, were conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!