AI Article Synopsis

  • Paroxysmal kinesigenic dyskinesia (PKD) is linked to irregularities in brain circuit activities, and this study aims to identify its neurophysiological markers using high-density electroencephalogram (hd-EEG) signals.
  • The research found that patients with PKD exhibit increased theta oscillations in various brain areas, which return to normal during remission, while non-remission patients show decreased functional connectivity in higher gamma frequency ranges.
  • The study successfully developed predictive models to identify remission states in PKD patients and highlighted the potential of hd-EEG as a clinical tool for monitoring and diagnosing the disorder.

Article Abstract

Paroxysmal kinesigenic dyskinesia (PKD) is associated with a disturbance of neural circuit and network activities, while its neurophysiological characteristics have not been fully elucidated. This study utilized the high-density electroencephalogram (hd-EEG) signals to detect abnormal brain activity of PKD and provide a neural biomarker for its clinical diagnosis and PKD progression monitoring. The resting hd-EEGs are recorded from two independent datasets and then source-localized for measuring the oscillatory activities and function connectivity (FC) patterns of cortical and subcortical regions. The abnormal elevation of theta oscillation in wildly brain regions represents the most remarkable physiological feature for PKD and these changes returned to healthy control level in remission patients. Another remarkable feature of PKD is the decreased high-gamma FCs in non-remission patients. Subtype analyses report that increased theta oscillations may be related to the emotional factors of PKD, while the decreased high-gamma FCs are related to the motor symptoms. Finally, the authors established connectome-based predictive modelling and successfully identified the remission state in PKD patients in dataset 1 and dataset 2. The findings establish a clinically relevant electroencephalography profile of PKD and indicate that hd-EEG can provide robust neural biomarkers to evaluate the prognosis of PKD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966565PMC
http://dx.doi.org/10.1002/advs.202306321DOI Listing

Publication Analysis

Top Keywords

pkd
9
electroencephalography profile
8
paroxysmal kinesigenic
8
kinesigenic dyskinesia
8
feature pkd
8
pkd decreased
8
decreased high-gamma
8
high-gamma fcs
8
profile paroxysmal
4
dyskinesia paroxysmal
4

Similar Publications

Exquisite sensitivity of Polycystin-1 to HO concentration in the endoplasmic reticulum.

Redox Biol

December 2024

Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, 20132, Milan, Italy; Università Vita-Salute San Raffaele, 20132, Milan, Italy. Electronic address:

Aquaporin11 (AQP11) is an endoplasmic reticulum (ER) resident peroxiporin. It allows HO transport from the lumen to the cytosol, guaranteeing redox homeostasis and signaling in and between the two organelles. Interestingly, Aqp11 mice develop a fatal, early onset polycystic kidney disease (PKD) similar to Autosomal Dominant PKD, a condition frequently associated with mutations of polycystin-1 (PC-1) in human patients.

View Article and Find Full Text PDF

Background: Despite the immense impact of Long COVID on public health and those affected, its aetiology remains poorly understood. Findings suggest that psychological factors such as depression contribute to symptom persistence alongside pathophysiological mechanisms, but knowledge of their relative importance is limited. This study aimed to synthesise the current evidence on psychological factors potentially associated with Long COVID and condition-relevant outcomes like quality of life.

View Article and Find Full Text PDF

Objectives: Cardiovascular complications are well known in humans with autosomal dominant polycystic kidney disease (PKD), but limited data exist for cats. This study aimed to assess echocardiographic changes, cardiac troponin I (cTnI) levels and systolic blood pressure (SBP) in Persian cats with PKD to detect early cardiac abnormalities.

Methods: In total, 52 Persian and mixed-Persian cats were enrolled, with 26 cats in the control group and 26 diagnosed with PKD via ultrasound due to the unavailability of genetic testing.

View Article and Find Full Text PDF

Notch2 Inhibition and Kidney Cyst Growth in Autosomal Dominant Polycystic Kidney Disease.

J Am Soc Nephrol

January 2025

Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.

Background: Notch signaling, a conserved mechanism of cell-to-cell communication, plays a crucial role in regulating cellular processes such as proliferation and differentiation in a context-dependent manner. However, the specific contribution of Notch signaling to the progression of polycystic kidney disease (PKD) remains unclear.

Methods: We investigated the changes in Notch signaling activity (Notch1-4) in the kidneys of autosomal dominant PKD (ADPKD) patients and two ADPKD mouse models (early and late onset).

View Article and Find Full Text PDF

H-DNA is an intramolecular DNA triplex formed by homopurine/homopyrimidine mirror repeats. Since its discovery, the field has advanced from characterizing the structure to discovering its existence and role . H-DNA interacts with cellular machinery in unique ways, stalling DNA and RNA polymerases and causing genome instability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!