Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The responsiveness of the photodetectors is critical to the accuracy of the fluorescent fiber optical temperature sensor. However, the current gain and signal-to-noise ratio (SNR) of traditional photodiodes (PDs) is low, which makes it difficult to meet the high-precision detection requirements of the system. In response to the above problems, this paper achieves a novel, to the best of our knowledge, multi-finger grating (MFG) avalanche photodiode (APD). The device combines the polysilicon gate and the space charge region formed by P+/N-Well to detect photon signals. The conversion capability of the photodetector can be significantly enhanced by the MFG structure. The principle of the device is simulated and verified by technology-computer-aided design (TCAD). The standard grating APD (SG-APD), 2-finger grating APD (2FG-APD), 3-finger grating APD (3FG-APD), and 4-finger grating APD (4FG-APD) are fabricated based on 0.18 µm CMOS process. The optoelectronic detection characteristics of these devices are analyzed by establishing an optoelectronic test platform. At 480 nm, the responsivity of 2FG-APD, 3FG-APD, and 4FG-APD increases by 79.3%, 96.9%, and 70.2%, respectively, compared to SG-APD (4.021 A/W). The test results indicate that 3FG-APD exhibits a strong photon response in the blue light range. The device has broad application prospects in the field of fluorescence detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.506427 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!