The transcriptome is beneficial for dissecting the mechanism of millet in response to low potassium stress and SiSnRK2.6 was identified as a potential target for improving low potassium stress tolerance. Foxtail millet (Setaria italica L.), which originated in China, has high nutrient utilization character. Nevertheless, the molecular mechanism of its tolerance to low potassium stress is largely unclear. In this research, the low potassium tolerant variety "Yugu28" was screened out by low potassium stress treatment, and the transcriptome of "Yugu28" under low potassium stress was comprehensively analyzed. A total of 4254 differentially expressed genes (DEGs) were identified, including 1618 up-regulated and 2636 down-regulated genes, respectively. In addition, there were 302 transcription factor (TF) genes in the DEGs and MYB TFs accounted for the highest proportion, which was 14.9%. After functional analysis of all DEGs, a total of 7 genes involved in potassium transport and potassium ion channels and 50 genes corresponding to hormones were screened. The expression levels of randomly selected 17 DEGs were verified by qRT-PCR and the results coincided well with the RNA-seq analysis, indicating the reliability of our transcriptome data. Moreover, one of the ABA signaling pathway genes, SiSnRK2.6, was identified and selected for further functional verification. Compared with the wild type, transgenic rice with ecotopic expression of SiSnRK2.6 showed remarkably increased root length and root number, indicating that overexpression of SiSnRK2.6 can enhance the resistance of transgenic plants to low potassium stress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-023-04532-6DOI Listing

Publication Analysis

Top Keywords

low potassium
32
potassium stress
24
potassium
10
low
8
foxtail millet
8
millet setaria
8
setaria italica
8
sisnrk26 identified
8
genes degs
8
stress
6

Similar Publications

Electrical activation of periodate by nano-zero-valent cobalt/nitrogen-doped carbon for sulfisoxazole degradation: Insights into rapid electron transfer mechanisms.

J Colloid Interface Sci

January 2025

Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Periodate (PI) activation via three-dimensional electrochemical (E) is a promising approach for degrading sulfisoxazole (SIZ), while the scarcity of active sites significantly limits the efficient electron-transfer rate. Herein, we synthesized multiple strongly active zero-valent cobalt (Co) nanoparticles encapsulated in nitrogen-doped carbon (NC) shells through Co-potassium chloride (KCl) doping pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8) to induce the rapid electron transfer pathways (ETP). Specifically, molten KCl doping provides confined structures for Co with a diameter of 12.

View Article and Find Full Text PDF

Polymyxin E (PME), a polymyxin antibiotic, serves as a final resort against antibiotic resistance. Nephrotoxicity is the primary concern when employing PME. To alleviate this issue, researchers have explored strategies including dosing adjustments and innovative formulations.

View Article and Find Full Text PDF

Spatial and Temporal Variability Management for All Farmers: A Cell-Size Approach to Enhance Coffee Yields and Optimize Inputs.

Plants (Basel)

January 2025

Laboratory of Precision Agriculture (LAP), Department of Biosystems Engineering, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil.

Coffee yield exhibits plant-level variability; however, due to operational issues, especially in smaller operations, the scouting and management of coffee yields are often hindered. Thus, a cell-size approach at the field level is proposed as a simple and efficient solution to overcome these constraints. This study aimed to present the feasibility of a cell-size approach to characterize spatio-temporal coffee production based on soil and plant attributes and yield (biennial effects) and to assess strategies for enhanced soil fertilization recommendations and economic results.

View Article and Find Full Text PDF

Background/objectives: Food-insecure individuals are at risk for poor health outcomes, including substandard sleep health. A possible association of food insecurity with sleep regularity has not been explored, and factors contributing to the relationship between food insecurity and sleep are not well understood. This cross-sectional study explored the relationship between food insecurity and sleep regularity and identified specific nutrients that mediated the association.

View Article and Find Full Text PDF

Mine tailings are a byproduct of mineral extraction and often pose an environmental challenge due to the contamination of soil and water bodies with dissolved metals. However, this type of waste offers the opportunity for the recovery of valuable metals such as silver (Ag). In the present investigation, an integral analysis of a sample of tailings was carried out, addressing granulometry, elemental composition, neutralization potential (NP), and acid potential (AP), as well as mineralogy, for the dissolution of silver from this type of waste.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!