A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insights into the functional role of Actinomycetia in promoting plant growth and biocontrol in tea (Camellia sinensis) plants. | LitMetric

Tea, a highly aromatic and globally consumed beverage, is derived from the aqueous infusion of dried leaves of Camellia sinensis (L.) O. Kuntze. Northeast India, encompassing an expansive geographical area between 24° and 27° N latitude and 88° and 95° E longitude, is a significant tea-producing region covering approximately 312,210 hectares. Despite its prominence, this region faces persistent challenges owing to a conducive climate that harbors the prevalence of pests, fungal pathogens, and weeds, necessitating agrochemicals. Helopeltis theivora, Oligonychus coffeae, and Biston suppressaria are prominent among the tea pests in this region. Concurrently, tea plants encounter fungal infections such as blister blight, brown root rot, and Fusarium dieback. The growing demand for safer tea production and the need to reduce pesticide and fertilizer usage has spurred interest in exploring biological control methods. This review focuses on Actinomycetia, which potentially safeguards plants from diseases and pest infestations by producing many bioactive substances. Actinomycetia, which resides in the tea rhizosphere and internal plant tissues, can produce antagonistic secondary metabolites and extracellular enzymes while promoting plant growth. Harnessing the biocontrol potential of Actinomycetia offers a promising solution to enhance tea production, while minimizing reliance on harmful agrochemicals, contributing to a more environmentally conscious and economically viable tea cultivation system.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-023-03789-1DOI Listing

Publication Analysis

Top Keywords

promoting plant
8
plant growth
8
tea
8
camellia sinensis
8
tea production
8
insights functional
4
functional role
4
actinomycetia
4
role actinomycetia
4
actinomycetia promoting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!