Unusual nuclear quantum effects may emerge near noble metal nanostructures such as squeezed vibrational states in molecular junctions and plasmonic resonance energy transfer in the infrared domain. Herein, nuclear quantum effects near heavy metals are studied by nuclear-electronic orbital density functional theory (NEO-DFT) with an effective core potential. For a quantum proton sandwiched between a pair of gold tips modeled by two Au clusters, NEO-DFT calculations suggest that the quantum proton density can be squeezed as the tip distance decreases. For an HF molecule placed near a one-dimensional Au nanowire composed of up to 34 Au atoms, real-time NEO time-dependent density functional theory (RT-NEO-TDDFT) shows that the infrared plasmonic motion within the Au nanowire may resonantly transfer electronic energy to the HF proton vibrational stretch mode. Overall, these calculations illustrate the advantages of the NEO approach for probing nuclear quantum effects, such as squeezed proton vibrational states and infrared plasmonic resonance energy transfer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c03112 | DOI Listing |
J Hazard Mater
December 2024
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China. Electronic address:
Photocatalytic technology provides a new approach for the harmless treatment of low concentration NO in the atmosphere. The development of high-performance semiconductor materials to improve the light absorption efficiency and the separation efficiency of photogenerated carriers is the focus of the research. Bismuth oxybismuth sulfate (BiOSO) shows significant potential for photocatalytic NO purification due to its unique electronic and layered structure.
View Article and Find Full Text PDFSci Adv
December 2024
Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA.
Most molecules and dielectric materials have characteristic bond vibrations or phonon modes in the mid-infrared regime. However, infrared absorption spectroscopy lacks the sensitivity for detecting trace analytes due to the low quantum efficiency of infrared sensors. Here, we report mid-infrared photothermal plasmonic scattering (MIP-PS) spectroscopy to push the infrared detection limit toward nearly a hundred molecules in a plasmonic nanocavity.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People's Republic of China.
Introduction: Pancreatic carcinoma (PC) is a highly malignant digestive tumor. Nanotechnology-based minimally invasive techniques have been proposed to provide a new opportunity for PC treatment.
Methods: A minimally invasive nanoplatform (named HA/DOX-AuNRs) is fabricated by HA modifying and DOX loading Au nanorings (AuNR).
Nanoscale
December 2024
National Key Laboratory of Advanced Micro and Nano Fabrication Technology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Broadband metamaterial absorbers in the long wavelength infrared region are promising in applications including thermal imaging, cloaking, radiative cooling and IR signature suppression. Although high absorption over the long wavelength infrared region has been extensively achieved, the challenge is to shrink both the thickness and lateral footprint of unit absorbing structures. Here, a compact broadband long wavelength infrared metamaterial absorber consisting of multilayered Ge/Ti/Ge/SiO hybrid cylindrical structures, whose period and thickness are only ∼1.
View Article and Find Full Text PDFNanoscale
December 2024
Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
Short-wave infrared (SWIR) photodetectors (PDs) have a wide range of applications in the field of information and communication. Especially in recent years, with the increasing demand for consumer electronics, conventional semiconductor-based PDs alone are unable to cope with the ever-increasing market. Colloidal quantum dots (QDs) have attracted great interest due to their low fabrication cost, solution processability, and promising optoelectronic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!