Recent Progress in the Endosomal Escape Mechanism and Chemical Structures of Polycations for Nucleic Acid Delivery.

Macromol Biosci

Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Published: April 2024

AI Article Synopsis

  • * The review highlights the mechanisms of how polymer-nucleic acid complexes (polyplexes) escape endosomes, emphasizing the importance of the acid dissociation constant (pK) in creating these polymers.
  • * Machine learning is also discussed as a tool for predicting pK values and aiding in the design of innovative pH-responsive polymers for improved nucleic acid delivery.

Article Abstract

Nucleic acid-based therapies are seeing a spiralling surge. Stimuli-responsive polymers, especially pH-responsive ones, are gaining widespread attention because of their ability to efficiently deliver nucleic acids. These polymers can be synthesized and modified according to target requirements, such as delivery sites and the nature of nucleic acids. In this regard, the endosomal escape mechanism of polymer-nucleic acid complexes (polyplexes) remains a topic of considerable interest owing to various plausible escape mechanisms. This review describes current progress in the endosomal escape mechanism of polyplexes and state-of-the-art chemical designs for pH-responsive polymers. The importance is also discussed of the acid dissociation constant (i.e., pK) in designing the new generation of pH-responsive polymers, along with assays to monitor and quantify the endosomal escape behavior. Further, the use of machine learning is addressed in pK prediction and polymer design to find novel chemical structures for pH responsiveness. This review will facilitate the design of new pH-responsive polymers for advanced and efficient nucleic acid delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.202300366DOI Listing

Publication Analysis

Top Keywords

endosomal escape
16
escape mechanism
12
ph-responsive polymers
12
progress endosomal
8
chemical structures
8
nucleic acid
8
acid delivery
8
nucleic acids
8
escape
5
nucleic
5

Similar Publications

Atomic Insights into pH-Dependent and Water Permeation of mRNA-Lipid Nanoparticles.

Mol Pharm

January 2025

Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

The exposure of mRNA to water is likely to contribute to the instability of RNA vaccines upon storage under nonfrozen conditions. Using atomistic molecular dynamics (MD) simulations, we investigated the pH-dependent structural transition and water penetration behavior of mRNA-lipid nanoparticles (LNPs) with the compositions of Moderna and Pfizer vaccines against COVID-19 in an aqueous solution. It was revealed that the ionizable lipid (IL) membranes of LNPs were extremely sensitive to pH, and the increased acidity could cause a rapid membrane collapse and hydration swelling of LNP, confirming the high releasing efficiency of both LNP vaccines.

View Article and Find Full Text PDF

The utilization of targeted nanoparticles as a selective drug delivery system is a powerful tool to increase the amount of active substance reaching the target site. This can increase therapeutic efficacy while reducing adverse drug effects. However, nanoparticles face several challenges: upon injection, the immediate adhesion of plasma proteins may mask targeting ligands, thereby diminishing the target cell selectivity.

View Article and Find Full Text PDF

Intracellular trafficking of lipid nanoparticles is hindered by cholesterol.

Int J Pharm

January 2025

College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Xueren Road, Dali, Yunnan Province 671003, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan Province 671003, China. Electronic address:

The intracellular trafficking of lipid nanoparticles (LNPs) leading to endosomal escape is critical for delivery efficiency. How components of LNP affect its intracellular trafficking and delivery efficiency remains unknown. Here, we developed a highly sensitive LNP/nucleic acid tracking platform based on streptavidin-biotin-DNA complex and high throughput imaging.

View Article and Find Full Text PDF

Development of a StIW111C-based bioresponsive pore-forming conjugate for permeabilizing the endosomal membrane.

Int J Biol Macromol

January 2025

Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25(th) Street, corner to J Street. Square of Revolution, Havana 10400. Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, corner to 15 Street, Playa, Havana 11600, Cuba. Electronic address:

Gene expression manipulation is pivotal in therapeutic approaches for various diseases. Non-viral delivery systems present a safer alternative to viral vectors, with reduced immunogenicity and toxicity. However, their effectiveness in promoting endosomal escape, a crucial step in gene transfer, remains limited.

View Article and Find Full Text PDF

Solid tumors (particularly the desmoplastic ones) usually harbor insurmountable mechanical barriers and formidable immunosuppressive tumor microenvironment (TME), which severely restricted nanomedicine-penetration and vastly crippled outcomes of numerous therapies. To overcome these barriers, a versatile nanoplatform orchestrated mechanotherapy with chemoimmunotherapy was developed here to simultaneously modulate tumor physical barriers and remodel TME for synergistically enhancing anticancer efficiency. Dexamethasone (DMS) and cis-aconityl-doxorubicin (CAD) were co-hitchhiked into phenylboronic acid functionalized polyethylenimine (PEI-PBA) carrier, and further in situ shielded by aldehyde-modified polyethylene glycol (PEG) to form CAD/DMS@PEG/PEI-PBA (CD@PB) nanoparticles (NPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!