Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been attracting much attention due to their rich physical and chemical properties. At the end of the chemical vapor deposition growth of 2D TMDCs, the adsorption of excess precursor clusters onto the sample is unavoidable, which will have significant effects on the properties of TMDCs. This is a concern to the academic community. However, the structures of the supported precursor clusters and their effects on the properties of the prepared 2D TMDCs are still poorly understood. Herein, taking monolayer WSe as the prototype, we investigated the structure and electronic properties of Se, W ( = 1-8), and WSe ( = 1-7) clusters adsorbed on monolayer WSe to gain atomic insight into the precursor cluster adsorption. In contrast to W clusters that tightly bind to the WSe surface, Se clusters except for Se and Se are weakly adsorbed onto WSe. The interaction between WSe ( = 1-7) clusters and the WSe monolayer decreases with the increase in the Se/W ratio and eventually becomes van der Waals interaction for WSe. According to the phase diagram, increasing the Se/W ratio by changing the experimental conditions will increase the ratio of Se and WSe clusters in the precursor, which can be removed by proper annealing after growth. W clusters induce lots of defect energy levels in the band gap region, while the adsorption of WSe and Se clusters ( = 3-6, 8) promotes the spatial separation of photo generated carriers at the interface, which is important for optoelectronic applications. Our results indicate that by controlling the Se/W ratio, the interaction between the precursor clusters and WSe as well as the electronic properties of the prepared WSe monolayer can be effectively tuned, which is significant for the high-quality growth and applications of WSe.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr05562k | DOI Listing |
Vavilovskii Zhurnal Genet Selektsii
November 2024
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
We present a series of articles proving the existence of a previously unknown mechanism of interaction between hematopoietic stem cells and extracellular double-stranded DNA (and, in particular, double-stranded DNA of the peripheral bloodstream), which explains the possibility of emergence and fixation of genetic information contained in double-stranded DNA of extracellular origin in hematopoietic stem cells. The concept of the possibility of stochastic or targeted changes in the genome of hematopoietic stem cells is formulated based on the discovery of new, previously unknown biological properties of poorly differentiated hematopoietic precursors. The main provisions of the concept are as follows.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA.
The evolutionary arms race between plants and insects has led to key adaptive innovations that drive diversification. Alkaloids are well-documented anti-herbivory compounds in plant chemical defences, but how these specialized metabolites are allocated to cope with both biotic and abiotic stresses concomitantly is largely unknown. To examine how plants prioritize their metabolic resources responding to herbivory and cold, we integrated dietary toxicity bioassay in insects with co-expression analysis, hierarchical clustering, promoter assay, and protein-protein interaction in plants.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan.
Most blood cells derive from hematopoietic stem cells (HSCs), originating from endothelial cells. The induction of HSCs from endothelial cells occurs during mid-gestation, and research has revealed multiple steps in this induction process. Hemogenic endothelial cells emerge within the endothelium, transition to hematopoietic cells (pre-HSCs), and subsequently mature into functional HSCs.
View Article and Find Full Text PDFCurr Alzheimer Res
December 2024
Department of Laboratory Medicine, The Second People's Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China.
Background: The potential relationship between Alzheimer's Disease (AD) and ferroptosis has received considerable attention, yet there is no comprehensive visualization analysis in this field. This study aimed to explore the research frontiers and hotspots through bibliometric analysis.
Methods: Literature related to AD and ferroptosis was collected from the Web of Science Core Collection.
Nat Commun
December 2024
Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich (TUM), Lichtenbergstraße 4, D-85748, Garching, Germany.
Silicon is by far the most important semiconducting material. However, solution-based synthetic approaches for unsaturated silicon-rich molecules require less efficient multi-step syntheses. We report on a straightforward access to soluble, polyhedral Si clusters from the binary phase KSi, which contains both [Si] and [Si] clusters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!