A three-dimensional terbium(III) coordination polymer of formula [Tb(bttb)(2,5-pzdc)] (1) [Hbttb = 1,2,4,5-tetrakis(4'-carboxyphenyl)benzene and H-2,5-pzdc = 2,5-pyrazinedicarboxylic acid] was obtained under hydrothermal conditions. The bttb tetraanion in 1 adopts the bridging and chelating-bridging pseudo-oxo coordination modes while the 2,5-pzdc dianion exhibits a rather unusual bis-bidentate bridging pseudo-oxo coordination mode, both ligands being responsible for the stiffness of the resulting 3D structure. Solid-state photoluminescent measurements illustrate that 1 exhibits remarkable green luminescence emission, the most intense band occurring in the region of 550 nm (D → F) with lifetimes at the millisecond scale. Thermometric performances of 1 reveal a maximum relative sensitivity () of 0.76% K at 295 K (δ = 0.05 K), constituting a Tb ratiometric solid luminescent thermometer over the physiological temperature range. Variable-temperature static (dc) magnetic susceptibility measurements for 1 in the temperature range 2.0-300 K show the expected behavior for the depopulation of the splitted levels of the F ground state of the magnetically anisotropic terbium(III) ion plus a weak antiferromagnetic interaction through the carboxylate bridges. No significant out-of-phase magnetic susceptibility signals were observed for 1 in the temperature range 2.0-10.0 K, either in the absence or presence of a static dc magnetic field.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt03555gDOI Listing

Publication Analysis

Top Keywords

temperature range
12
luminescent thermometer
8
coordination polymer
8
pseudo-oxo coordination
8
static magnetic
8
magnetic susceptibility
8
intensity lifetime
4
lifetime ratiometric
4
ratiometric luminescent
4
thermometer based
4

Similar Publications

Surface induced crystallization/amorphization of phase change materials.

Nanotechnology

January 2025

MME, Wright State University, 3640 Colonel Glenn Hwy, Lake Campus, 7600 Lake Drive, Lake Campus, Fairborn, Ohio, 45435, UNITED STATES.

Surface induced crystallization/amorphization of a Germanium-antimony-tellurium (GST) nanolayer is investigated using the phase field model. A Ginzburg-Landau (GL) equation introduces an external surface layer (ESL) within which the surface energy and elastic properties are properly distributed. Next, the coupled GL and elasticity equations for the crystallization/amorphization are solved.

View Article and Find Full Text PDF

Extreme Synergy in the Random-Energy Model.

Phys Rev Lett

December 2024

Initiative for the Theoretical Sciences and CUNY-Princeton Center for the Physics of Biological Function, The Graduate Center, CUNY, New York, New York 10016, USA.

The random-energy model (REM), a solvable spin-glass model, has impacted an incredibly diverse set of problems, from protein folding to combinatorial optimization, to many-body localization. Here, we explore a new connection to secret sharing. We derive an analytic expression for the mutual information between any two disjoint thermodynamic subsystems of the REM.

View Article and Find Full Text PDF

Metallic Bonding in Close-Packed Structures: Structural Frustration from a Hidden Gauge Symmetry.

Phys Rev Lett

December 2024

Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada.

Based on its simple valence electron configuration, we may expect lithium to have straightforward physical properties that are easily explained. However, solid lithium, when cooled below 77 K, develops a complex structure that has been debated for decades. A close parallel is found in sodium below 36 K where the crystal structure still remains unresolved.

View Article and Find Full Text PDF

The supramolecular binding exclusively by H-bonds of SeO, MoO and WO ions to form nanojars of the formula [EO⊂{-Cu(μ-OH)(μ-pz)}] (; E = Se, Mo, W; = 28-34; pz = pyrazolate) was studied in solution by electrospray ionization mass spectrometry, variable temperature, paramagnetic H NMR and UV-vis spectroscopy, and in the solid state by single-crystal X-ray crystallography. These large anions allow for the observation of a record nanojar size, (E = Mo, W). Six crystal structures are described of nanojars of varying sizes with either SeO, MoO or WO entrapped ions, including the first example of a cocrystal of two different nanojars in crystallographically unique positions, and .

View Article and Find Full Text PDF

The computational search for new stable inorganic compounds is faster than ever, thanks to high-throughput density functional theory (DFT). However, stable compound searches remain highly expensive because of the enormous search space and the cost of DFT calculations. To aid these searches, recommendation engines have been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!