The difficulty associated with accurately measuring the height of the back peak () in cyclic voltammetry (CV) has long plagued electrochemists. Most commonly, is measured by extrapolating a linear fit from a selected region of a voltammogram after the switching potential (), but without substantial separation between the peak potential () and , this approach always overestimates the background current and so underestimates . Moreover, experimental conditions can present challenges for this method as an appropriate region for linear fitting is often lacking due to neighboring peaks or solvent electrolysis current. Here, we present a new method for finding the baseline current for the back peak in CV experiments. By examining the CV data as a function of time rather than potential, it is possible to fit a generalized Cottrell or Shoup-Szabo equation to the current decay of the forward peak and extrapolate this function as a baseline for the return peak. This approach was tested by using simulated and experimental data in a variety of conditions, including data demonstrating linear and radial diffusional control. We found that the method allows for more accurate determination of back peak currents, especially when linear fits are complicated by narrow electrochemical windows or radial diffusion. A user-friendly Python program was written to automatically find an appropriate fitting range for this analysis and measure peak currents. We have made this program available to the electrochemical community at large.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c04181DOI Listing

Publication Analysis

Top Keywords

peak
8
return peak
8
cyclic voltammetry
8
peak currents
8
current
5
accurate measurement
4
measurement return
4
peak current
4
current cyclic
4
voltammetry diffusional
4

Similar Publications

Sweet corn ( L. ) is gaining global popularity as a staple crop and a vegetable due to its high nutritional value. However, information on grain magnesium (Mg) and calcium (Ca) status and their response to phosphorus (P) fertilization in sweet corn is still insufficient.

View Article and Find Full Text PDF

Background: In adolescents and adults with tetralogy of Fallot (TOF), right ventricle (RV) electromechanical dyssynchrony (EMD) due to right bundle branch block (RBBB) is associated with reduced exercise capacity and RV dysfunction. While the development of RBBB following surgical repair of tetralogy of Fallot (rTOF) is a frequent sequela, it is not known whether EMD is present in every patient immediately following rTOF. The specific timing of the onset of RBBB following rTOF therefore provides an opportunity to assess whether acute RBBB is associated with the simultaneous acquisition of EMD.

View Article and Find Full Text PDF

Unlabelled: The effects of high hydrostatic pressure (HHP) (400-650 MPa) and holding temperature (25-50 °C) in thermally assisted HHP processing on multi-scale structure of starch (granule, crystalline and molecular), techno-functional properties, and digestibility of sorghum starch (SS) were evaluated. Response surface methodology has verified that the process impact on the modification of SS was dependent primarily on the pressure level. As HHP increased, processed SS progressively lost their granular structure and Maltese cross, indicating gradual structural disorder within the granules.

View Article and Find Full Text PDF

Effect of nutrient-rich quinoa fraction composite wheat flour on product development.

J Food Sci Technol

January 2025

Department of Flour Milling Baking and Confectionery Technology, Central Food Technological Research Institute, (Council of Scientific and Industrial Research), Mysore, 570020 India.

To study the characteristics of bread by incorporating nutrient-rich quinoa flour as a new source for product development. Wheat flour was replaced by fractionated quinoa flour in different variations from 0%QF to 20%QF: 0%, 5%, 10%, 15%, and 20% WQF blends, respectively. Physicochemical studies resulted in higher protein and fiber content for the higher blend.

View Article and Find Full Text PDF

Plant growth promotion via priming with volatile organic compounds emitted from strain EXTN-1.

Front Microbiol

January 2025

Research Institute of International Agriculture, Technology and Information, Hankyong National University, Anseong-si, Republic of Korea.

Volatile organic compounds (VOCs) produced by potential plant growth-promoting rhizobacteria (PGPR) play an important role in plant interactions. However, the mechanisms underlying this phenomenon are not well understood. Our findings show that the influence of VOCs from the PGPR strain (EXTN-1) on tobacco plant growth is dependent on the culture media used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!