Lactate is now considered an additional fuel or signaling molecule in the brain. In this study, using an oxygen-glucose deprivation (OGD) model, we found that treatment with lactate inhibited the global increase in intracellular calcium ion concentration ([Ca]) in neurons and astrocytes, decreased the percentage of dying cells, and caused a metabolic shift in astrocytes and neurons toward aerobic oxidation of substrates. OGD resulted in proinflammatory changes and increased expression of cytokines and chemokines, whereas incubation with lactate reduced these changes. Pure astrocyte cultures were less sensitive than neuroglia cultures during OGD. Astrocytes exposed to lipopolysaccharide (LPS) also showed pro-inflammatory changes that were reduced by incubation with lactate. Our study suggests that lactate may have neuroprotective effects under ischemic and inflammatory conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.17051DOI Listing

Publication Analysis

Top Keywords

neurons astrocytes
8
incubation lactate
8
lactate
6
lactate protects
4
protects neurons
4
astrocytes
4
astrocytes ischemic
4
ischemic injury
4
injury modulating
4
modulating homeostasis
4

Similar Publications

Chitinase 3-like protein 1 (CHI3L1) is emerging as a promising biomarker for assessing intracranial lesion burden and predicting prognosis in traumatic brain injury (TBI) patients. Following experimental TBI, Chi3l1 transcripts were detected in reactive astrocytes located within the pericontusional cortex. However, the cellular sources of CHI3L1 in response to hemorrhagic contusions in human brain remain unidentified.

View Article and Find Full Text PDF

Background: Analyzing disease-linked genetic variants via expression quantitative trait loci (eQTLs) is important for identifying potential disease-causing genes. Previous research prioritized genes by integrating Genome-Wide Association Study (GWAS) results with tissue- level eQTLs. Recent studies have explored brain cell type-specific eQTLs, but they lack a systematic analysis across various Alzheimer's disease (AD) GWAS datasets, nor did they compare effects between tissue and cell type levels or across different cell type-specific eQTL datasets.

View Article and Find Full Text PDF

The main characteristics of Parkinson's disease (PD) are the loss of dopaminergic (DA) neurons and abnormal aggregation of cytosolic proteins. However, the exact pathogenesis of PD remains unclear, with ferroptosis emerging as one of the key factors driven by iron accumulation and lipid peroxidation. Glial cells, including microglia, astrocytes, and oligodendrocytes, serve as supportive cells in the central nervous system (CNS), but their abnormal activation can lead to DA neuron death and ferroptosis.

View Article and Find Full Text PDF

Background And Aim: Bacterial lipopolysaccharide (LPS)-induced neuroinflammation can be the most dependable animal model for studying neurodegeneration mechanisms driven by systemic inflammation-induced neuroinflammation. Hence, this study aimed to standardize the LPS model of neuroinflammation by comparing the effect of relatively low-dose LPS administered for different durations on the induction of neurodegeneration in Wistar rats.

Materials And Methods: Six groups of six adult Wistar rats per group were used in the study.

View Article and Find Full Text PDF

The brain in Spain: The legacy of Santiago Ramón y Cajal.

Neuroscientist

January 2025

Neurology Service, Lille Catholic Institute Hospital Group, (Groupe Hospitalier de l'Institut Catholique de Lille), GHICL, Lomme cedex, France.

The legacy of Santiago Ramón y Cajal, Spain's first Nobel laureate neuroscientist recognized as the founding father of modern neuroscience, is to be preserved in a new museum in Madrid: the National Museum of Natural Sciences (MNCN), one of the most important scientific research institutes in the country sciences in the scope of natural sciences of the Spanish National Research Council. For a boy who dreamed of being an artist but started his career apprenticed to first a barber and then a cobbler, Santiago Ramón y Cajal made a distinguished mark in science. One of Cajal's most important contributions to our understanding of the brain was his discovery of the direction of the information flow within neurons and in neural circuits, which he called the "dynamic polarization law," without a doubt the founding principle of neurosciences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!