X-linked hypophosphatemia (XLH) is a rare X-linked dominant inherited disorder caused by loss-of-function variants in the PHEX gene and characterized by renal phosphate wasting, hypophosphatemia, abnormal vitamin D metabolism, growth retardation and lower limb deformities. We describe a case of XLH-rickets in a 7-year-old girl with scaphocephaly, Chiari syndrome type I and syringomyelia, with a de novo non-canonical splice variant (c.1080-3C > G) in intron 9 of the PHEX gene, that has not been previously described.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788211PMC
http://dx.doi.org/10.1016/j.bonr.2023.101731DOI Listing

Publication Analysis

Top Keywords

x-linked hypophosphatemia
8
7-year-old girl
8
girl scaphocephaly
8
scaphocephaly chiari
8
chiari syndrome
8
syndrome type
8
type syringomyelia
8
phex gene
8
hypophosphatemia novo
4
novo novel
4

Similar Publications

Objective: To examine the evidence addressing the management of X-linked hypophosphatemia (XLH) in children to inform treatment recommendations.

Methods: We searched Embase, MEDLINE, Web of Science, and Cochrane Central up to May 2023. Eligible studies included RCTs and observational studies of individuals less than 18yrs with clinically or genetically confirmed XLH.

View Article and Find Full Text PDF

Rickets in children usually present with skeletal manifestations. However, they can also rarely present with extraskeletal manifestations, one of them being respiratory insufficiency. We present an unusual case of a girl in early childhood with respiratory insufficiency, which turned out to be due to the underlying vitamin D-dependent rickets (VDDR).

View Article and Find Full Text PDF

Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is an uncommon hereditary form of rickets characterised by chronic renal phosphate loss and impaired bone mineralisation. This results from compound heterozygous or homozygous pathogenic variants in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), a key producer of extracellular inorganic pyrophosphate (PPi) and an inhibitor of fibroblast growth factor23 (FGF23). ENPP1 deficiency impacts FGF23 and increases its activity.

View Article and Find Full Text PDF

Background: Inactivation or mutations of FAM20C causes human Raine Syndrome, which manifests as lethal osteosclerosis bone dysplasia or non-lethal hypophosphatemia rickets. However, it is only hypophosphatemia rickets that was reported in the mice with Fam20c deletion or mutations. To further investigate the local and global impacts of Fam20c mutation, we constructed a knock-in allele carrying Fam20c mutation (D446N) found in the non-lethal Raine Syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!