Purpose: This study aims to investigate the influence of the build angle on the surface characteristics, accuracy, and dimensional stability of digital light processing (DLP) printed resin bases.
Material And Methods: Rectangular and complete denture base samples were fabricated at 0, 45, and 90-degree angles (n = 5 for rectangular samples; n = 10 for maxillary and mandibular denture base samples) using a DLP printer. Surface morphology and roughness were assessed using a profilometer, followed by measuring hydrophilicity with a contact angle meter. Accuracy (trueness and precision) and dimensional stability were evaluated at intervals of 1, 3, 7, 14, 28, and 42 days after base printing using best-fit-alignment and deviation analysis in 3D software. Statistical analysis was performed using one-way ANOVA for surface characteristics (α = 0.05), multi-way ANOVA for accuracy and dimensional stability data, and Tukey's test for post-hoc comparisons.
Results: The 0-degree group exhibited significantly lower mean roughness (1.27 ± 0.19 μm) and contact angle (80.50 ± 3.71°) ( < 0.001) compared to the 90-degree and 45-degree groups. The 0-degree build angle led to superior trueness (maxilla: 77.80 ± 9.35 μm, mandible: 61.67 ± 10.32 μm) and precision (maxilla: 27.51 ± 7.43 μm, mandible: 53.50 ± 15.16 μm) compared to other groups ( < 0.001). Maxillary base precision was superior to mandibular base precision ( < 0.001). The maxillary base exhibited less dimensional deviation than the mandibular base. The 90-degree group showed the highest deviation compared to the other two groups, and all groups' deviations increased over time ( < 0.001).
Conclusions: The build angle significantly influences the surface characteristics, accuracy, and dimensional stability of DLP-printed denture bases. A 0-degree build angle provides the most favorable performance. The maxillary base displayed superior precision and dimensional stability than the mandibular base.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788800 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e24095 | DOI Listing |
Acta Crystallogr C Struct Chem
January 2025
College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China.
A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.
View Article and Find Full Text PDFChin Med
January 2025
State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China.
Background: Cell membrane chromatography (CMC) is a biochromatography with a dual function of recognition and separation, offering a distinct advantage in screening bioactive compounds from Chinese medicines (CMs). Yindan Xinnaotong soft capsule (YD), a CM formulation, has been widely utilized in the treatment of cardiovascular disease. However, a comprehensive mapping of the myocardial protective active compounds remains elusive.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Sri Krishnadevaraya University, Ananthapur 515003, India. Electronic address:
Composite gels are a type of soft matter, which contains a continuous three-dimensional crosslinked network and has been embedded with non-gel materials. Compared to pure gels, composite gels show high flexibility and tunability in properties and hence have attracted extensive interest in applications ranging from cancer therapy to tissue engineering. In this study, we incorporated triethylenetetramine (TETA)-functionalized cobalt ferrite nanoparticles (ANPs) into a hydrogel consisting of sodium alginate (SA) and methyl cellulose (MC), and examined the resulting composite gels for controlled drug release.
View Article and Find Full Text PDFBiomaterials
December 2024
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China. Electronic address:
The effective prevention and treatment of anastomotic leakage after intestinal anastomosis for colorectal diseases is still a major clinical challenge. In order to assist intestinal anastomosis healing and avoid anastomotic leakage caused by high tension, low blood supply or infection, we designed a double-layer nanofiber intestinal anastomosis scaffold, which was composed of electrospun PTMC/PHA nanofibers as the main layer, and electrospun PVA/OHA-Gs nanofibers with antibacterial properties as the antibacterial surface layer. This double-layer scaffold has good toughness, its maximum tensile force value could reach 8 N, elongation could reach 400 %, and it has hydrophilic properties, and its contact angle was about 60°.
View Article and Find Full Text PDFACS Sens
January 2025
Chimie des Interactions Plasma Surface group, Chemistry Department, Université de Mons, 7000 Mons, Belgium.
Borophene, a two-dimensional allotrope of boron, has emerged as a promising material for gas sensing because of its exceptional electronic properties and high surface reactivity. This review comprehensively overviews borophene synthesis methods, properties, and sensing applications. However, it is crucial to acknowledge the substantial gap between the abundance of theoretical literature and the limited experimental studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!