Effective sealing of wet, dynamic and concealed wounds remains a formidable challenge in clinical practice. Sprayable hydrogel sealants are promising due to their ability to cover a wide area rapidly, but they face limitations in dynamic and moist environments. To address this issue, we have employed the principle of a homogeneous network to design a sprayable hydrogel sealant with enhanced fatigue resistance and reduced swelling. This network is formed by combining the spherical structure of lysozyme (LZM) with the orthotetrahedral structure of 4-arm-polyethylene glycol (4-arm-PEG). We have achieved exceptional sprayability by controlling the pH of the precursor solution. The homogeneous network, constructed through uniform cross-linking of amino groups in protein and 4-arm-PEG-NHS, provides the hydrogel with outstanding fatigue resistance, low swelling and sustained adhesion. In vitro testing demonstrated that it could endure 2000 cycles of underwater shearing, while in vivo experiments showed adhesion maintenance exceeding 24 h. Furthermore, the hydrogel excelled in sealing leaks and promoting ulcer healing in models including porcine cardiac hemorrhage, lung air leakage and rat oral ulcers, surpassing commonly used clinical materials. Therefore, our research presents an advanced biomaterial strategy with the potential to advance the clinical management of wet, dynamic and concealed wounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788230 | PMC |
http://dx.doi.org/10.1016/j.bioactmat.2023.12.002 | DOI Listing |
J Ethnopharmacol
January 2025
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China. Electronic address:
Ethnopharmacological Relevance: Emplastrum has a long history of use in the clinical practice of traditional Chinese medicine (TCM), valued for its convenient external application and pronounced therapeutic effects. Traditionally, the emplastrum was composed of numerous herbal medicines. The elucidation of their mechanisms of action are of great importance.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Water Engineering and Management, Tarbiat Modares University, Tehran, Iran.
The Hirmand Transboundary River Basin (HTRB), shared by Afghanistan, Iran, and Pakistan, is a hydrologically critical and politically sensitive region. This basin sustains livelihoods, ecosystems, and agriculture in a region plagued by climatic variability and geopolitical tensions. The Hirmand River, which forms the heart of this basin, faces severe morphological and discharge changes due to upstream water management, climatic shifts, and land use changes, directly impacting downstream ecosystems and human populations.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Robotics Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan, Gyeonggi-do 15588, Republic of Korea.
This study investigates the corrosion inhibition effects of eco-friendly conifer cone extract (CCE) on steel rebars embedded in cement mortar exposed to 3.5% NaCl under alternate wet/dry cycles. CCE concentrations of 0, 0.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, University of Carthage, National Institute of Applied Sciences and Technology, Tunis, 2080, Tunisia.
Background: The stone-dwelling genus Blastococcus plays a key role in ecosystems facing extreme conditions such as drought, salinity, alkalinity, and heavy metal contamination. Despite its ecological significance, little is known about the genomic factors underpinning its adaptability and resilience in such harsh environments. This study investigates the genomic basis of Blastococcus's adaptability within its specific microniches, offering insights into its potential for biotechnological applications.
View Article and Find Full Text PDFSci Rep
January 2025
School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran.
The experimental analysis of nanoclay in enhanced oil recovery applications was rarely investigated. The main goal of this study is to analyze the flowing behavior of nanoclay as enhanced oil recovery fluid. After finding the most stable enhanced oil recovery fluid, the flow characteristic measurement was done.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!