Introduction: Oro-control communication is one of the complications associated with dental extraction and oral surgeries. This case report presents a minimally invasive surgical approach for bone regeneration at the site of oro-antral communication utilizing a prefabricated computer-aided design and computer-aided manufacturing (CAD-CAM) allogenic bone block.
Methods: A 20-year-old healthy female, nonsmoker, with a badly destructed upper right first molar was referred for dental implant placement after extraction. Cone beam computerized tomography images revealed the presence of a large bone defect associated with oro-antral communication with the maxillary sinus and insufficient bone for dental implant placement. A prefabricated CAD-CAM allogenic bone scaffold was fabricated. After surgical exposure, the scaffold was secured in place and covered with a non-resorbable membrane. A dental implant was placed after 5 months, and a trephining biopsy was processed for histological evaluation.
Results: Closure of the oro-antral communication was clinically observed. The average width of the alveolar bone was 12 mm, and the average height was 11 mm. Histological analysis at 5-month intervals showed thin newly formed bone trabeculae encircling remnants of graft material surrounded by osteoid tissue. The newly formed bone percentages were 32 ± 18% and 28 ± 17% volume remained after the biodegradation of the scaffold. Specific immune-histochemical staining by anti-vascular epithelial growth factor expression index value was 32.06%.
Conclusions: A prefabricated CAD-CAM scaffold was successfully used to seal a large oro-antral communication and regenerate sufficient bone to place a dental implant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cid.13300 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!