Advanced Tuneable Micronanoplatforms for Sensitive and Selective Multiplexed Spectroscopic Sensing via Electro-Hydrodynamic Surface Molecular Lithography.

Adv Sci (Weinh)

School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and, Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Published: March 2024

Micro- and nanopatterning of materials, one of the cornerstones of emerging technologies, has transformed research capabilities in lab-on-a-chip diagnostics. Herein, a micro- and nanolithographic method is developed, enabling structuring materials at the submicron scale, which can, in turn, accelerate the development of miniaturized platform technologies and biomedical sensors. Underpinning it is the advanced electro-hydrodynamic surface molecular lithography, via inducing interfacial instabilities produces micro- and nanostructured substrates, uniquely integrated with synthetic surface recognition. This approach enables the manufacture of design patterns with tuneable feature sizes, which are functionalized via synthetic nanochemistry for highly sensitive, selective, rapid molecular sensing. The development of a high-precision piezoelectric lithographic rig enables reproducible substrate fabrication with optimum signal enhancement optimized for functionalization with capture molecules on each micro- and nanostructured array. This facilitates spatial separation, which during the spectroscopic sensing, enables multiplexed measurement of target molecules, establishing the detection at minute concentrations. Subsequently, this nano-plasmonic lab-on-a-chip combined with the unconventional computational classification algorithm and surface enhanced Raman spectroscopy, aimed to address the challenges associated with timely point-of-care detection of disease-indicative biomarkers, is utilized in validation assay for multiplex detection of traumatic brain injury indicative glycan biomarkers, demonstrating straightforward and cost-effective micro- and nanoplatforms for accurate detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966563PMC
http://dx.doi.org/10.1002/advs.202306068DOI Listing

Publication Analysis

Top Keywords

sensitive selective
8
spectroscopic sensing
8
electro-hydrodynamic surface
8
surface molecular
8
molecular lithography
8
micro- nanostructured
8
micro-
5
advanced tuneable
4
tuneable micronanoplatforms
4
micronanoplatforms sensitive
4

Similar Publications

Purpose: Glioma is the most prevalent tumor of the central nervous system. The poor clinical outcomes and limited therapeutic efficacy underscore the urgent need for early diagnosis and an optimized prognostic approach for glioma. Therefore, the aim of this study was to identify sensitive biomarkers for glioma.

View Article and Find Full Text PDF

Medical students are exposed to the hospital environment and patients during their studies, increasing the risk of exposure to virulent and antibiotic-resistant isolates of Staphylococcus aureus. The aim of the study is to determine the prevalence of Staphylococcus aureus among medical students who have varying levels of exposure to the hospital environment to provide valuable insights into the risk of colonization and transmission. Nasal swabs and fingerprints were obtained and cultured on a selective medium for staphylococci.

View Article and Find Full Text PDF

Analysis of differential gene expression of PBMC for the in vitro detection of drug sensitization.

Allergol Int

January 2025

Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany; Department of Dermatology and Allergy, University Hospital Aachen, Aachen, Germany.

Background: The detection of drug-specific activation of T cells in the lymphocyte transformation test (LTT) is mainly based on cell proliferation or cytokine secretion. However, the LTT presents with a varying sensitivity and specificity. The aim of our study was to analyse the genome wide gene expression of PBMC to identify drug allergy-specific gene regulation patterns.

View Article and Find Full Text PDF

Background And Objective: Research into new noninvasive diagnostic tools for bladder cancer (BCa) with superior sensitivity and specificity to cystoscopy and cytology is promising. The current study evaluated a diagnostic panel of tumor progression-related mRNAs in urine samples of NMIBC patients and controls.

Methods: This study carefully selected 129 participants, including 67 NMIBC patients, 31 hematuria patients due to nonmalignant urological disorders, and 31 healthy individuals.

View Article and Find Full Text PDF

Study Design: Systematic review.

Objective: Artificial intelligence (AI) and deep learning (DL) models have recently emerged as tools to improve fracture detection, mainly through imaging modalities such as computed tomography (CT) and radiographs. This systematic review evaluates the diagnostic performance of AI and DL models in detecting cervical spine fractures and assesses their potential role in clinical practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!