Cocktail Cell-Reprogrammed Hydrogel Microspheres Achieving Scarless Hair Follicle Regeneration.

Adv Sci (Weinh)

Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.

Published: March 2024

The scar repair inevitably causes damage of skin function and loss of skin appendages such as hair follicles (HF). It is of great challenge in wound repair that how to intervene in scar formation while simultaneously remodeling HF niche and inducing in situ HF regeneration. Here, chemical reprogramming techniques are used to identify a clinically chemical cocktail (Tideglusib and Tamibarotene) that can drive fibroblasts toward dermal papilla cell (DPC) fate. Considering the advantage of biomaterials in tissue repair and their regulation in cell behavior that may contributes to cellular reprogramming, the artificial HF seeding (AHFS) hydrogel microspheres, inspired by the natural processes of "seeding and harvest", are constructed via using a combination of liposome nanoparticle drug delivery system, photoresponsive hydrogel shell, positively charged polyamide modification, microfluidic and photocrosslinking techniques. The identified chemical cocktail is as the core nucleus of AHFS. In vitro and in vivo studies show that AHFS can regulate fibroblast fate, induce fibroblast-to-DPC reprogramming by activating the PI3K/AKT pathway, finally promoting wound healing and in situ HF regeneration while inhibiting scar formation in a two-pronged translational approach. In conclusion, AHFS provides a new and effective strategy for functional repair of skin wounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966561PMC
http://dx.doi.org/10.1002/advs.202306305DOI Listing

Publication Analysis

Top Keywords

hydrogel microspheres
8
scar formation
8
situ regeneration
8
chemical cocktail
8
cocktail cell-reprogrammed
4
cell-reprogrammed hydrogel
4
microspheres achieving
4
achieving scarless
4
scarless hair
4
hair follicle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!