Mounting evidence suggests a strong association between tumor immunity and epigenetic regulation. The histone-lysine N-methyltransferase 2 (KMT2) family plays a crucial role in the methylation of histone H3 at lysine 4. By influencing chromatin structure and DNA accessibility, this modification serves as a key regulator of tumor progression and immune tolerance across various tumors. These findings highlight the potential significance of the KMT2 family in determining response to immune checkpoint inhibitor (ICI) therapy, which warrants further exploration. In this study, we integrated four ICI-treated cohorts (n = 2069) across 10 cancer types and The Cancer Genome Atlas pan-cancer cohort and conducted a comprehensive clinical and bioinformatic analysis. Our study indicated that patients with KMT2 family gene mutations benefited more from ICI therapy in terms of overall survival (P < 0.001, hazard ratio [HR] = 0.733 [95% confidence interval (CI): 0.632-0.850]), progression-free survival (P = 0.002, HR = 0.669 [95% CI: 0.518-0.864]), durable clinical benefit (P < 0.001, 54.1% vs. 32.6%), and objective response rate (P < 0.001, 40.6% vs. 22.0%). Through a comprehensive analysis of the tumor microenvironment across different KMT2 mutation statuses, we observed that tumors harboring the KMT2 mutation exhibited enhanced immunogenicity, increased infiltration of immune cells, and higher levels of immune cell cytotoxicity, suggesting a propensity towards a "hot tumor" phenotype. Therefore, our study indicates a potential association between KMT2 mutations and a more favorable response to ICI therapy and implicates different tumor microenvironments associated with ICI therapy response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10789049PMC
http://dx.doi.org/10.1186/s12943-023-01930-8DOI Listing

Publication Analysis

Top Keywords

kmt2 family
16
immune checkpoint
8
ici therapy
8
mutation status
4
kmt2
4
status kmt2
4
family
4
family associated
4
associated immune
4
checkpoint inhibitors
4

Similar Publications

KMT2 Family of H3K4 Methyltransferases: Enzymatic Activity-dependent and -independent Functions.

J Mol Biol

April 2024

Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, Room 4149, 50 South Dr, Bethesda, MD 20892, USA. Electronic address:

Histone-lysine N-methyltransferase 2 (KMT2) methyltransferases are critical for gene regulation, cell differentiation, animal development, and human diseases. KMT2 biological roles are often attributed to their methyltransferase activities on lysine 4 of histone H3 (H3K4). However, recent data indicate that KMT2 proteins also possess non-enzymatic functions.

View Article and Find Full Text PDF

Mutation status of the KMT2 family associated with immune checkpoint inhibitors (ICIs) therapy and implicating diverse tumor microenvironments.

Mol Cancer

January 2024

Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, Shandong, 250012, People's Republic of China.

Mounting evidence suggests a strong association between tumor immunity and epigenetic regulation. The histone-lysine N-methyltransferase 2 (KMT2) family plays a crucial role in the methylation of histone H3 at lysine 4. By influencing chromatin structure and DNA accessibility, this modification serves as a key regulator of tumor progression and immune tolerance across various tumors.

View Article and Find Full Text PDF

Background: The involvement of the KMT2 methyltransferase family in the pathogenesis of head and neck squamous cell carcinoma (HNSCC) remains elusive.

Method: This study adhered to the PRISMA guidelines, employing a search strategy in the LIVIVO, PubMed, Scopus, Embase, Web of Science, and Google Scholar databases. The methodological quality of the studies was assessed by the Joanna Briggs Institute.

View Article and Find Full Text PDF

Epigenetic dysregulation is a prominent feature in cancer, as exemplified by frequent mutations in chromatin regulators, including the MLL/KMT2 family of histone methyltransferases. Although MLL1/KMT2A activity on H3K4 methylation is well documented, their non-canonical activities remain mostly unexplored. Here we show that MLL1/KMT2A methylates Borealin K143 in the intrinsically disordered region essential for liquid-liquid phase separation of the chromosome passenger complex (CPC).

View Article and Find Full Text PDF

Heterozygous mutations in any of the six H3K4 methyltransferases (KMT2s) result in monogenic neurodevelopmental disorders, indicating nonredundant yet poorly understood roles of this enzyme family in neurodevelopment. Recent evidence suggests that histone methyltransferase activity may not be central to KMT2 functions; however, the enzymatic activity is evolutionarily conserved, implicating the presence of selective pressure to maintain the catalytic activity. Here, we show that H3K4 methylation is dynamically regulated during prolonged alteration of neuronal activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!