Structural resolution of protein interactions enables mechanistic and functional studies as well as interpretation of disease variants. However, structural data is still missing for most protein interactions because we lack computational and experimental tools at scale. This is particularly true for interactions mediated by short linear motifs occurring in disordered regions of proteins. We find that AlphaFold-Multimer predicts with high sensitivity but limited specificity structures of domain-motif interactions when using small protein fragments as input. Sensitivity decreased substantially when using long protein fragments or full length proteins. We delineated a protein fragmentation strategy particularly suited for the prediction of domain-motif interfaces and applied it to interactions between human proteins associated with neurodevelopmental disorders. This enabled the prediction of highly confident and likely disease-related novel interfaces, which we further experimentally corroborated for FBXO23-STX1B, STX1B-VAMP2, ESRRG-PSMC5, PEX3-PEX19, PEX3-PEX16, and SNRPB-GIGYF1 providing novel molecular insights for diverse biological processes. Our work highlights exciting perspectives, but also reveals clear limitations and the need for future developments to maximize the power of Alphafold-Multimer for interface predictions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883280 | PMC |
http://dx.doi.org/10.1038/s44320-023-00005-6 | DOI Listing |
Histol Histopathol
December 2024
Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
Research towards regenerative dentistry focused on developing scaffold materials whose high performance induces cell adhesion support and guides tissue growth. An early study investigated the proliferation abilities and attachment of human periodontal ligament fibroblasts (HPLFs) on two bovine pericardium membranes with different thicknesses, 0.2 mm and 0.
View Article and Find Full Text PDFAntioxid Redox Signal
December 2024
National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease, and podocyte injury is one of the major contributors to DKD. As a crucial transcriptional factor that regulates cellular response to oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) is an attractive therapeutic target for DKD. In this study, we evaluated the therapeutic potential of DDO-1039, a novel small-molecule Nrf2 activator developed with protein-protein interaction strategy, on podocyte injury in DKD.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
December 2024
Department of Pediatrics (T.S., J.-R.M., Y.H.C., J.M.S., J. Kaplan, A.C., L.W., D.G., S.T., S.I., M.D., W.Y., A.L.M., M.R.).
Background: Computational modeling indicated that pathological high shear stress (HSS; 100 dyn/cm) is generated in pulmonary arteries (PAs; 100-500 µm) in congenital heart defects causing PA hypertension (PAH) and in idiopathic PAH with occlusive vascular remodeling. Endothelial-to-mesenchymal transition (EndMT) is a feature of PAH. We hypothesize that HSS induces EndMT, contributing to the initiation and progression of PAH.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China.
Objectives: To explore the effect and the probable mechanisms of JLD in the treatment of type 2 diabetes mellitus (T2DM) - associated cognitive impairment (TDACI).
Methods: The effect of JLD in combating TDACI was assessed in T2DM model mice by conducting Morris water maze (MWM) behaviour testing. Active components and their putative targets, as well as TDACI-related targets, were collected from public databases.
Dev Growth Differ
December 2024
Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
Transcription factors collaborate with epigenetic regulatory factors to orchestrate cardiac differentiation for heart development, but the underlying mechanism is not fully understood. Here, we report that GATA-6 induces cardiac differentiation but peroxisome proliferator-activated receptor α (PPARα) reverses GATA-6-induced cardiac differentiation, possibly because GATA-6/PPARα recruits the polycomb protein complex containing EZH2/Ring1b/BMI1 to the promoter of the cardiac-specific α-myosin heavy chain (α-MHC) gene and suppresses α-MHC expression, which ultimately inhibits cardiac differentiation. Furthermore, Ring1b ubiquitylates PPARα and GATA-6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!