AI Article Synopsis

  • - Chronic metabolic stress can increase traits associated with cancer stem cells (CSCs) and contribute to chemoresistance, mainly due to issues in sugar metabolism and protein modification processes.
  • - Research indicates that production of a substance called hyaluronan under chronic stress conditions exacerbates these CSC-like traits, while low doses of specific compounds can mimic this effect by disrupting sugar metabolism.
  • - Enhancing sugar assembly and blocking Notch signaling can reduce CSC characteristics and improve the effectiveness of chemotherapy drugs like cisplatin, revealing a new way that metabolic stress helps cancer cells survive.

Article Abstract

Chronic metabolic stress paradoxically elicits pro-tumorigenic signals that facilitate cancer stem cell (CSC) development. Therefore, elucidating the metabolic sensing and signaling mechanisms governing cancer cell stemness can provide insights into ameliorating cancer relapse and therapeutic resistance. Here, we provide convincing evidence that chronic metabolic stress triggered by hyaluronan production augments CSC-like traits and chemoresistance by partially impairing nucleotide sugar metabolism, dolichol lipid-linked oligosaccharide (LLO) biosynthesis and N-glycan assembly. Notably, preconditioning with either low-dose tunicamycin or 2-deoxy-D-glucose, which partially interferes with LLO biosynthesis, reproduced the promoting effects of hyaluronan production on CSCs. Multi-omics revealed characteristic changes in N-glycan profiles and Notch signaling activation in cancer cells exposed to mild glycometabolic stress. Restoration of N-glycan assembly with glucosamine and mannose supplementation and Notch signaling blockade attenuated CSC-like properties and further enhanced the therapeutic efficacy of cisplatin. Therefore, our findings uncover a novel mechanism by which tolerable glycometabolic stress boosts cancer cell resilience through altered N-glycosylation and Notch signaling activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10789756PMC
http://dx.doi.org/10.1038/s41419-024-06432-zDOI Listing

Publication Analysis

Top Keywords

notch signaling
16
glycometabolic stress
12
cancer cell
12
signaling activation
12
tolerable glycometabolic
8
stress boosts
8
boosts cancer
8
cell resilience
8
resilience altered
8
altered n-glycosylation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!