Browning can occur in the matrices of alditol and amino acids due to heating or long-term storage, which poses challenges in achieving the desired appearance stability. To investigate the mechanism of browning in the sorbitol-glycine system, we evaluated the evolution of typical intermediates, including glucose and α-dicarbonyl compounds (α-DCs), during heating at 100 ˚C. The browning index and intermediate products of the sorbitol-glycine system increased more rapidly compared to those of the sorbitol system. After heating for 10 h, the browning index of the sorbitol-glycine system was eight times higher than that of sorbitol alone. In the presence of glycine, sorbitol underwent continuous conversion into glucose. After 10 h of heating, the concentration of glucose in the sorbitol-glycine system reanched 726.6 mg/L, which was approximately 63 times higher than that in the sorbitol system. Mass spectrometry analysis revealed the presence of α-DCs such as 3-deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), 2,3-butanedione (2,3-BD), in the sorbitol-glycine system. These compounds were precursors of melanoidins, indicating the occurrence of the Maillard reaction and resulting in the browning of the system. Therefore, the browning process in the sorbitol-glycine system involved two stages of reactions: the conversion of sorbitol to glucose and the Maillard reaction between glucose and glycine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.113870DOI Listing

Publication Analysis

Top Keywords

sorbitol-glycine system
24
system
9
glucose α-dicarbonyl
8
α-dicarbonyl compounds
8
browning sorbitol-glycine
8
sorbitol system
8
times higher
8
higher sorbitol
8
maillard reaction
8
glucose
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!