Resistance risk assessment of mefentrifluconazole in Corynespora cassiicola and the control of cucumber target spot by a two-way mixture of mefentrifluconazole and prochloraz.

Pestic Biochem Physiol

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China. Electronic address:

Published: January 2024

The cucumber target spot, caused by Corynespora cassiicola, is a major cucumber disease in China. Mefentrifluconazole, a new triazole fungicide, exhibits remarkable efficacy in controlling cucumber target spot. However, the resistance risk and mechanism remain unclear. In this study, the inhibitory activity of mefentrifluconazole against 101 C. cassiicola isolates was determined, and the results indicated that the EC values ranged between 0.15 and 12.85 μg/mL, with a mean of 4.76 μg/mL. Fourteen mefentrifluconazole-resistant mutants of C. cassiicola were generated from six parental isolates in the laboratory through fungicide adaptation or UV irradiation. The resistance was relatively stable after ten consecutive transfers on a fungicide-free medium. No cross-resistance was observed between mefentrifluconazole and pyraclostrobin, fluopyram, prochloraz, mancozeb, or difenoconazole. Investigations into the biological characteristics of the resistant mutants revealed that six resistant mutants exhibited an enhanced compound fitness index (CFI) compared to the parental isolates, while others displayed a reduced or comparable CFI. The overexpression of CcCYP51A and CcCYP51B was detected in the resistant mutants, regardless of the presence or absence of mefentrifluconazole. Additionally, a two-way mixture of mefentrifluconazole and prochloraz at a concentration of 7:3 demonstrated superior control efficacy against the cucumber target spot, achieving a protection rate of 80%. In conclusion, this study suggests that the risk of C. cassiicola developing resistance to mefentrifluconazole is medium, and the overexpression of CcCYP51A and CcCYP51B might be associated with mefentrifluconazole resistance in C. cassiicola. The mefentrifluconazole and prochloraz two-way mixture presented promising control efficacy against the cucumber target spot.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2023.105719DOI Listing

Publication Analysis

Top Keywords

cucumber target
20
target spot
20
two-way mixture
12
mefentrifluconazole prochloraz
12
resistant mutants
12
mefentrifluconazole
10
resistance risk
8
corynespora cassiicola
8
mixture mefentrifluconazole
8
parental isolates
8

Similar Publications

Brassinosteroid Enhances Cucumber Stress Tolerance to NaHCO by Modulating Nitrogen Metabolism, Ionic Balance and Phytohormonal Response.

Plants (Basel)

December 2024

Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.

Under NaHCO stress, exogenous 24-epibrassinolide (EBR) markedly alleviated Na accumulation in cucumber plants, thereby decreasing the Na/K, Na/Mg, and Na/Ca ratios. This mitigation was accompanied by elevated concentrations of K, Ca, and Mg, as well as enhanced expression of the and genes. In addition, the activities of plasma membrane H-ATPase, vesicular membrane H-ATPase, and vesicular membrane H-PPase were significantly increased, contributing to the maintenance of ionic balance in cucumber plants.

View Article and Find Full Text PDF

Exogenous 2,4-Epibrassinolide Alleviates Alkaline Stress in Cucumber by Modulating Photosynthetic Performance.

Plants (Basel)

December 2024

Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.

Brassinosteroids (BRs) are recognized for their ability to enhance plant salt tolerance. While considerable research has focused on their effects under neutral salt conditions, the mechanisms through which BRs regulate photosynthesis under alkaline salt stress are less well understood. This study investigates these mechanisms, examining plant growth, photosynthetic electron transport, gas exchange parameters, Calvin cycle dynamics, and the expression of key antioxidant and Calvin cycle genes under alkaline stress conditions induced by NaHCO.

View Article and Find Full Text PDF

Cucumber ( L.) is a crucial vegetable crop, requiring significant nitrogen fertilizer inputs. However, excessive nitrogen application not only impairs growth but also poses severe environmental risks.

View Article and Find Full Text PDF

Background: Peanut allergy (PA) is one of the most prevalent food allergies with a lack of favorable safety/efficacy treatment. A cucumber mosaic virus-like particle expressing peanut allergen component Ara h 2 (VLP Peanut) has been developed as a novel therapeutic approach for PA.

Objective: We assessed the tolerogenic properties and reactivity of VLP Peanut.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!