A mutant GH3 family β-glucosidase from Oenococcus oeni exhibits superior adaptation to wine stresses and potential for improving wine aroma and phenolic profiles.

Food Microbiol

College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China. Electronic address:

Published: May 2024

In this study, we conducted a comprehensive investigation into a GH3 family β-glucosidase (BGL) from the wild-type strain of Oenococcus oeni and its mutated counterpart from the acid-tolerant mutant strain. Our analysis revealed the mutant BGL's remarkable capacity to adapt to wine-related stress conditions, including heightened tolerance to low pH, elevated ethanol concentrations, and metal ions. Additionally, the mutant BGL exhibited superior hydrolytic activity towards various substrates. Through de novo modeling, we identified specific amino acid mutations responsible for its resilience to low pH and high ethanol environments. In simulated wine conditions, the mutant BGL outperformed both wild-type and commercial BGLs, efficiently releasing terpene and phenolic aglycones from glycosides in wine grapes. These findings not only expand our understanding of O. oeni BGLs but also highlight their potential in enhancing wine production. The mutant BGL's enhanced adaptation to wine stress conditions opens promising avenue for improving wine quality and flavor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2023.104458DOI Listing

Publication Analysis

Top Keywords

gh3 family
8
family β-glucosidase
8
oenococcus oeni
8
adaptation wine
8
improving wine
8
mutant bgl's
8
stress conditions
8
mutant bgl
8
wine
7
mutant
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!